U NIVE RSELF

109

Deliverable D2.2

Unified Management Framework (UMF)

Specifications
Release 2

Grant Agreement 257513

Date of Annex | 25-07-2011

Dissemination Level Public

Nature Report

Work package WP2 — Unified Management Framework

Due delivery date 01 June 2012

Actual delivery date 17 October 2012

Lead beneficiary UPRC Panagiotis Demestichas, pdemest@unipi.gr

SEVENTH FRAMEWORK
PROGRAMME

FUTURE
NETWORKS

mailto:pdemest@unipi.gr

D2.2 — UMF specifications: Release 2

FP7-UniverSelf / Grant no. 257513 2

D2.2 — UMF specifications: Release 2

Authors

UPRC - Kostas Tsagkaris, Panagiotis Demestichas, Vera Stavroulaki, Aristi Galani,
Panagiotis Vlacheas, Yiouli Kritikou, Nikos Koutsouris, Aimilia Bantouna,Dimitris
Karvounas, Evagelia Tzifa, Assimina Sarli, Marios Logothetis, Andreas
Georgakopoulos, Louiza Papadopoulou, Vassilis Foteinos, Dimitris Kelaidonis, George
Poulios

TCF — Gerard Nguengang, Mathieu Bouet

ALBLF — Pierre Peloso, Samir Ghamri-Doudane, Benoit Ronot, Leila Bennacer, Magali
Prunaire, Laurent Ciavaglia

ALUD — Markus Gruber

FT — Christian Destré, Imen Grida Ben Yahia, Zwi Altman, Richard Combes
TIS — Antonio Manzalini, Roberto Minerva

TID —Beatriz Fuentes

Fraunhofer — Mikhail Smirnov

VTT — Teemu Rautio, Jukka Makeld, Petteri Mannersalo, Marja Liinasuo
UCL — Alex Galis, Marinos Charalambides, Lefteris Mamatas

UniS —Stylianos Georgoulas, Majid Ghader

NKUA - Makis Stamatelatos, Konstantinos Chatzikokolakis, Evangelos Kosmatos,
Kaliroi Arapoglou, Panagiotis Spappis, George Katsikas

NEC - Zarrar Yousaf

FP7-UniverSelf / Grant no. 257513

D2.2 — UMF specifications: Release 2

Executive summary

UniverSelf project aims at adding maturity level to the autonomic networking research field by generating high
industrial impact, keeping a business focused approach and federating the various valuable research results
that have already been obtained. In this context, the design of a Unified Management Framework (UMF),
which targets at embedding the autonomic paradigms in any type of network in a consistent manner, shall be
developed by an overall functional specification of all its components and the related underlying mechanisms.

The deliverable 2.2 presents the first complete specification of the UMF specifications. The specification
focuses on: definitions of the operations and the lifecycle of the Network Empowerment Mechanisms (NEMs)
that enable networks with embedded autonomic algorithms/solutions into existing and future managed
networked systems and services in a “plug and play” / “unplug and play” manner; specification of the UMF core
functional blocks, namely Governance, Coordination and Knowledge; and the identification of mechanisms that
enable the realization of UMF functions. This specification highlights the opportunities for contributions and
actions in various standardization bodies/groups, which would pave the way for industry adoption. The next
release of UMF specification (deliverable 2.4) will consolidate the design artefacts and will also focus on the
system architecture, deployment and migration aspects of UMF.

FP7-UniverSelf / Grant no. 257513 4

D2.2 — UMF specifications: Release 2

Table of Content

1
2
3

5

INErOAUCHION .. 11
UIMFF OVEIVIEW...ceuuuiiiieeiiiiieiiiiireeiiiieneieiiiraeeiiisaeetiissssesiissssesttssssestessssessessssestessssessasnsseses 12
UMF Functional SpecifiCationsccoiieeeiiiiemieiiiicciircesesrreeeesseeneessennssessennssessennssessennsnenes 14
3.1 Network Empowerment Mechanism (NEM)cooovieiiiriiieeeee et e e 14
3.1.1 Life-cycle 0f @ NEM INSTANCE ..eoiiiiiiiiiiiee ittt ettt e ettt e st e e st e e s s bae e s saaeeesaraeessnbaeesnnnns 15
3.1.2 Information MOdel Of NEMS.....c.coiuiiiiiiiiieieieee sttt ettt s s e sreeneenneene 18
3.1.3 NEM MANIFEST .ottt sttt ettt r e e sanesae e sreesreeneenneea 23
3.1.4 NEM Installation and INStantiationc.cceoiieeiiiiiiiiii et 25
3.1.5 NEM MANOAte ..eeuieeieeiieniieriee ettt sttt sttt ettt s be e b e r e e bt e nesmnesmeesreesneenneenneens 26
3.1.6 NEM INStaNCe DESCIIPTION c....viiiiiiiiiiiiiiee ettt s e e s s e e st e e s sra e e s e 27
3.1.7 NEM DEIETION .ttt ettt ettt st e e st e st e st e e e st e e st e e eabeesabeeeabeesabeeennee s 30
3.1.8 NEM'’s Relations with COOrdinationccceeiieriieriiiie ittt 30
3.1.9 Description of the operations for state transitions.........ccoceeeieriiiniiiniee e 31
3.2 GOVEINANCE DIOCK ...t 37
3.2.1 HUman to NetWOrk INTEIACE ...c.eoiiiiiiieieeee ettt st s 37
3.2.2 Policy Derivation and Management fUNCLIONcocueeiiiiiiiiniiieiieeee e 38
2 T N 1\ Y T o =T g T=T o) T TP 43
3.2.4 ENfOrcemMent fUNCHIONoiiiiiiieccc ettt et e e st e e et e e ssaae e s seraeeesbaeeeennes 46
33 KNOWIEAZE DIOCK ...t et ee e e e are e e e e ba e e e e eabae e e ennenas 52
3.3.1 Information Collection & Dissemination fUNCLIONccccerieiieiiniiiniineeeee e 52
3.3.2 Information Storage & INdexing fuNCLIONcoociiiiiiiiiiii e 55
3.3.3 Information Processing & Knowledge Production fUNCtioncccueeiiiiiieeeciiie e 57
3.3.4 Information Flow Establishment and Optimisation functionc.ccccccieeiiiiiie e 59
3.4 Coordination BIOCKcc..oiiiiiee e 64
3.4.1 Orchestration fUNCLIONc.eeiieii ettt ettt st st b e sbe e b et eae 64
3.4.2 Optimization and Conflict avoidance fUNCLIONcccuiviiiiii e 65
3.5 =T = Tol T T OO OO PPURUPTURTUPRRROORt 71
UMPF core MmechanisSms.......ccciiiiiiiiiiiiiiiiiiiiiiiissssssssssssssssssssssess 74
4.1 GOVErNANCE MECNANISMNIS/TOOIS . .euviiiieiei ittt e e e ettt e e e e e e ereeesssesessreaeeeeesssesesseeeeeees 74
4.1.1 Translation MEChANISIMS.coiiiiiiiiieee e e saa e et saneenees 74
4.1.2 Policy validation, conflict detection and resolutioncccceeiiiiiiiriiieneeeee e 80
4.1.3 Policy asseSSMeNt MECHANISINS.ciiiiiiiiiiieieee e e e s e e e e e sesbarr e e e e e e s esteraeeeeeesessastaeseeeesannes 82
4.1.4 Network supervision MEChANISIMScccuiiiiiiie e e e e e e s et re e e e e e e e s antaaeeeeeeennes 84
4.2 Information and knowledge management mechanismscccccvieeieciieecccciee e, 84
4.2.1 Information collection and dissemination MechanisSMSccceeierieriienie e 84
4.2.2 Information storage MECHANISIMScccuiiiiiieeeecee et e e e e e e e e srae e e e snta e e s snnaeeeenseeeeas 86
4.2.3 Information processing and knowledge production mechanismscccccceevciieeeicieeiccieee e, 87
4.2.4 Information flow optimization MechanisMsuuiiiiiiiiii e 88
4.3 Coordination MEChANISMS......coouiiiiieee e st 89
4.3.1 Optimization and conflict avoidance MechanisSms..........coocciiiiiiiiii i 89
Standardization @SPECES.......cciiieuiiiiiiiiirtre e re e eree e s e s e s e n s s s e n e s s e enas s s senarasseananas 91
5.1 UMPF and Standardization.........cooceeeiieeeiie et 91

FP7-UniverSelf / Grant no. 257513 5

D2.2 — UMF specifications: Release 2

5.2 Standardization OPPOrTUNITIESccecciiie it e e e erte e e e eratae e e senraeeeeanes 91
UMEF N PractiCe ...ceeuiiieiiieiiiiiiiiiiiiieiiriiiiiesieeiirnesreesstssssreessrsasssrasssrasssrsssssssssssnssssnssssnssssas 95
Requirements ANAlYSIScciveeeieiiireieiiieireirieeierrennneseennssesseensseseennssessennssessennsssssennsssssennnnnns 100
(070 T 0T 113 T T o N 104
REFEIENCES ..iiiiieieeeiiiiiiiiiiirinniiiiniiirereasessisetttreessssssssssstineesssssssssssssneessssssssssssssesssnsssssssssnns 105

PN o] o TV AT o TP 107
[T T T 13 109
Annex A: Restful UMF APl description......ccccciiieeiiiiinniiiiinniiiiieniiniiemiesisssss 111
ANnexX B: Data DictioNary......cicceeieuiiieiiieiiiiiiiiiiiiiiieiireisreireesrsssrsnssreasssrassssassssansss 112

13.1 Overview of SID POliCY MOGEIooiieiiieeeieie ettt e e e e aae e e e eaaeeeean 112
13.1.1 [0 1 or YO PSPPI 112
13.1.2 Policy APPlICation ABEoouiiiiiiiieeit ettt st st eanee s 117
13.1.3 Policy ManagemeENT ABEoooiiii ettt e e et e et e e e e eaaa e e e et e e e eata e e eanaeas 118
13.14 Policy SPeCification ABEccocuiiiieiiie ettt ettt e e et e e e et e e e e are e e e eata e e e e tbe e e entaeeeanaeas 118

13.2 UMF info MOdel diagramscccciiiiecciiie ettt e et e e e ete e e e s eave e e e aae e e senaaeeesennnneeean 119

13.3 Information flow in the UMF.........coo it saee e 120

FP7-UniverSelf / Grant no. 257513 6

D2.2 — UMF specifications: Release 2

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.

{01\ TSN O1V/YRVITIYVAF: T Yo Ie [=ToToT 0 0] o Yo X 14 o) o VAPPSR 13

Simplified NEM inStance [ife-CyCle.oiiiiiiiiee e s 16

Detailed NEM instance life-cycle (With transitions).cccceiciiee e 17

Inheritance of UMF information model from SID (NEM Part). ...c.cccceevieeriiieiieenieecieecieesieesve e 18

Representing the NEM structure in an information model VIeW.c.cceviiiiieiiiienieinieceeeeeeeee 19

Information model of Policies regarding NEMS.ccoocuveeeviieecnciee e,

Information model of Information and Knowledge regarding NEMs.

Information model of Actions regarding NEMS.ccccoeiiiiiiiinieiniienieesie ettt e 22

Different time SCales Of @ NEM ...cooiiiiiiiiieiieee ettt sttt sat e sbe e sa b e e sabeenateesabeenaees 31
Policy levels of UniverSelf approach in parallel with eTOM business process framework levels. 39
o] [Tor A oToT o] =] ol o =T gl L1 S 39
Representation of @ POICYRUIE.oooiiii ittt ettt e e e ta e e e e aaa e e s areeeens 40
Representation Of POlICYSIIUSTUIE. ...ccc.ui ittt sttt 40
NEM policy definition activity diagram.coocuiiiiiiiie e e tr e e are e e e aree e 47
NEM instantiation activity diagram.cocueiiiiiiiiii ettt s 48
Update Mandate activity diagram.oocueeiiiiiiiiiie ettt s s 49
Change NEM operational state diagram.ccocuiiiiiiiieieciiee e e eree e et e e e e aan e e e earaeas 50
Register NEM actiVity diagram. ...cooueoii ettt sttt ettt ettt e st sbe e st e e sbeeeanee s 51

Figure 19. Overview of the Information Collection and Dissemination Function.........
Figure 20. Overview of the Information Storage and Indexing Function......................
Figure 21. Overview of the Information Processing and Knowledge Production Function.cccccceeceeeiieeneennns 58
Figure 22. Overview of the Information Flow Establishment and Optimization Function.............cccccceeveeennnenn. 60
Figure 23. Knowledge Exchange workflow diagram using the Pull method.ccccoooeiiii e, 62
Figure 24. Knowledge Exchange workflow diagram using the Pub-sub method.ccccccoviiiiiiienininc e, 63

Figure 25. Information subscription workflow diagram (i.e., the Resolve Knowledge Dependencies process of

the NEM

Figure 26.
Figure 27.

FegISTration dIABram). .ooueii et e et e e e et e e e et e e e e e aba e e eesteeesataaaeeaabaeeeeataeeeanaeeeeareaaans 64

Manage conflicts activity diagram.

Set Policy activity diagram.c.cccoevvevircieennne

Figure 28. High level representation of the policy continuum for the instantiation of UC6

Figure 29. Policy te€mMPIate iN OWL. ..ooci ettt e e e e s et e e e e e e s e s aabaaaeeeeeesensstaneeaessennsenes 77
Figure 30. The concept Of USER IN OWL.....iccuiiiiiiieeieiies e ceieee e stee s ettt e seeaee e staeeeesntaeessaaeeessssseesensseeessnssesssnsseeennn 78
Figure 31. Policy translation PrOCESS. ..cciuuiiiiieei ittt ettt e e st e e e e e s e stta e e e e e e sesastaaaeeeeeesnnssaraeeeaessennssenes 79
Figure 32. Policy Conflict Resolution iNteraction.ccevcuiiriiiiie it e e snaeeeeas 81
Figure 33. Policy Conflict RESOIULION TIOW.eeiiiiiiiieciec et s e e e s aae e e snaeeeeas 82
FIGUIE 34. TrUST Of POIICIES .oeceviieeeciiee ettt e e et e e et e e e e e tbae e e sta e e e e ataeeseasaseesasbeeeeassaesesnsssessnsseeanns 83
Figure 35. Standardization opportunities for UMF/ UniverSelf.c.ccovviiiiiiiieiieeceeece e 94
Figure 36. EXample Das@d ON UCHK.ccuuiiiiiee i cecciiieiee ettt e e ettt e e e e e s e s etaee e e e e s e s astaaeeaaeeeeessasaeesaeesennnnsnes 95
Figure 37. Core NetWOrk TOPOIOZY. .oocii ittt e e e s e et e e e e e e s e s eaataaeeaeeeesnssasaeesaeseennnrnns 99

Figure 38. UMF Axes of Requirements........

Figure 39. UMF Requirements Synthesis

Figure 40. New Management Functionality for Future Networks

Figure 41. SID POlCY DOMAIN. ..uiiiiiiiieieiiiieceitee st ee e et e e e ete e e st e e e e et e e e seaaeeesaaseeeestaeesanseaeesanseaeeansseeeassneennnsens 112
Figure 42. Level Two of the Policy Domain of the SID Framework.ccocoeiiieiiciiiiccceee e 112

FP7-UniverSelf / Grant no. 257513 7

Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.

D2.2 — UMF specifications: Release 2

Representation of @ POIICYRUIE. ...c..eiiiiiiie et 113
Lo [Tor Y =1 RS 114
Policy EVENES aNd POIICY SELS. ..cuuiiiiiiiiiiiiieeiee ettt ettt e 114
POLICY STAtEMENT. ...ttt et b et e bt e s b e e st e e bt e e saneesne e e saneenees 115
[0] [oy VA @Y o T 11 T o PR RS 116
POBICY ACTION. 1ottt et b et e be e s bt e bt e s b et e sbe e e abe e e sabeebeeesabe e st e e saneeneas 116
Policy Application simPlified VIEW.eeeieiiiiiciee ettt e e st e e nra e e e nneeas 117
ANAtOMY OF @ POIICY SEIVET. .ttt e e s e e e e ata e e e ate e e e satbeeeeasaeeesnsaeeesnsreeennnns 117
Using Policy and PartyRoles to Manage Resources and SErviCes.ocvuiivrcieeiiiiieeennineeenineeesveeens 118
Information model of DEN-NZ CONTEXL ..eeceuriiiiiiiieeiiieeeeciee e eeiree e sree e et e e e e re e e sate e e e satreeeenraeeennneas 119
Information model of Service package bundlecooceiiiiiiiiiiiii e 119
Information model of Service PerformanCe.......c..eiiiiieiiiiiii e s 120
UMPF INFOrMation fIOWeiiiiiiiieiieeee ettt sttt st be e st sabe e sabe e sabaesabeesabaesanee s 123

FP7-UniverSelf / Grant no. 257513

D2.2 — UMF specifications: Release 2

Foreword

Deliverable D2.2 provides a first complete functional specification of the UMF (Unified Management
Framework) of the UniverSelf project, which comprises the detailed description of the Network Empowerment
Mechanism (NEM) as a concept, the specification of the core UMF components and the relevant interfaces,
and the possible mechanisms that can support the main functions of the core blocks.

According to the project lifecycle, the prioritized requirements prescribed in work package 4 are transferred to
work package 2 to guide the specification of the Unified Management Framework (UMF). Work package 2 aims
at a UMF specification in terms of identification of the required functional modules for the UMF, its interfaces
and models, which also addresses the requirements deriving from the use cases handled by the project.

The UMF design is developed across three documents; each one corresponding to one UMF release, namely
deliverable D2.1 (UMF release 1, published in July 2011), deliverable D2.2 (UMF release 2, published in October
2012) and deliverable D2.4 (UMF release 3, scheduled for May 2013). The scope of these deliverables, which is
in line with the Description of Work and also reveals what each UMF release addresses, is as follows:

D2.1 — UMF Specifications — Release 1: The deliverable features a first description of the UMF design. It
describes the foundation (requirements, objectives and approach) for achieving the target of embodying
autonomic paradigms in any type of network and services, spanning widely different technological contexts,
and providing to operators a service-oriented abstraction of the network they are operating. Deliverable D2.1
elaborates on the fundamental elements for achieving a network agnostic management of services, embedding
advanced service and network management intelligence, and federating the management of multiple
networks, hence, bridging wireless, wireline, access, core, services, etc. The fundamental elements include
governance, information management, and feature embodiment (comprising the cognitive part) functions. This
UMF core functions are designed with flexibility in mind to accommodate different networking scenarios and
use cases in a consistent manner. It also addresses requirements deriving from the first burst of the project
selected use cases. Emphasis is placed in compatibility with existing and emerging industry standards, the
incorporation of recent autonomic networking research results, and in achieving a future-proof design. In
particular, the UMF release 1 focuses on the identification of the common functional groups and their
interfaces; the possible organization and cooperation modes between UMF elements and domains; it includes
a system view of the UMF which consist of the introduction of a number of specialized logical nodes and of a
possible hierarchical structure, a discussion on orchestration issues, as well as a mapping of the identified
functional blocks into these nodes and the elaboration on their functionalities and interfaces among them. The
positioning and mapping of the UMF (and of its components and interfaces) onto deployed and standardized
control and management architectures, which is an essential aspect for the industrial impact, is initiated in this
document and will be further progressed in the next releases.

D2.2 — UMF Specifications — Release 2: The deliverable is a first complete functional specification of the UMF as
derived from the “bottom-up requirements” synonymous of 6 use case problem specific requirements
addressing operators’ day-to-day problems identified in live networks and on existing service/network
architectures; the “top-down requirements” synonymous of high-level functions, functional blocks and
interfaces and “horizontal requirements” synonymous of a reposition of TMN FCAPS towards the management
functions of Future Networks. A key characteristic for effective Network Empowerment Mechanisms’
deployment is based on the management framework ability to govern, orchestrate/coordinate NEMs'
behaviour and facilitate the information/knowledge sharing among them. These demands lead to the need for
a thorough description of the three enabling core UMF components: Governance, Knowledge and
Coordination. These components incorporate key functions of the specified Functional Blocks in the first UMF
release with enhancements driven by autonomic system mechanisms. In this context, UMF Specifications —
Release 2 focuses on the specification of NEM definition and design, which is used then in the full description
of NEM’s lifecycle, the specification of UMF core components and their interaction/interfaces, as well as, the
identification of necessary mechanisms to support the main functions of the core blocks and achieve their
objectives. Furthermore, the UMF information model is defined by refining and extending the TMF information
framework (i.e. SID) patterns, allowing information sharing across different layers, administrative domains and
network segments. The opportunities for contributions and actions in various standardization bodies/groups,
which is a prerequisite for industry adoption, is presented in the deliverable 2.2 (UMF Release 2). Furthermore,
the deliverable presents as an example of the UMF realization the UC6 of operator-governed, end-to-end,
autonomic, joint network and service management.

FP7-UniverSelf / Grant no. 257513 9

D2.2 — UMF specifications: Release 2

D2.4 — UMF Design — Release 3: This version of the UMF will accommodate requirements from all use cases
handled by the project and will incorporate corresponding network empowerment solutions for Future
Networks as applicable to the overall networking infrastructure, spanning wireless and wireline, as well as
access, core and service segments. Emphasis will be placed on the project-wide harmonization and
consolidation of the UMF components (core components and NEMs) and on the system architecture
assurances that would make UMF ready for deployment with a migration path. Deliverable D2.4 will provide
the latest developments on the federation of management systems, model driven specifications, the
information and knowledge management functionality and the context awareness patterns, the continuum of
governance tools (cross-referencing, where appropriate, the deliverable D2.3) and the intelligence
embodiment mechanisms. In addition to previous UMF releases, UMF Release 3 will focus on the complete
description of the intelligence embodiment and network empowerment integration in the UMF and the
network and service infrastructure; the definition of migration and deployment strategies. The document will
report on the contributions to the standardization process and certification activities.

FP7-UniverSelf / Grant no. 257513 10

D2.2 — UMF specifications: Release 2

1 Introduction

The Unified Management Framework (UMF), which is developed in the UniverSelf project, is an innovative
management framework that aims to solve actual network problems and address the growing management
complexity of the highly decentralized and dynamic environment of resources and systems in Future Internet.
The novel characteristics are achieved through the smooth and trustworthy embodiment and empowerment of
autonomic principles and techniques in both services and networks.

The Network Empowerment Mechanisms (NEMs), which are introduced in the context of UMF, encapsulate
autonomic functions (closed control loops/algorithms) that can be embedded into legacy and future
networking systems and services in a “plug and play”/”unplug and play” way. Consequently, the UMF shall
enable trustworthy integration and interworking of NEMs within the operator's management UMF ability to
govern, orchestrate/coordinate different NEMs' behaviour and facilitate the information/knowledge sharing
among them. These demands led to the introduction of UMF core, which consists of three enabling
components, Governance (GOV), Knowledge (KNOW) and Coordination (COORD). These components
incorporate key functions of the specified Functional Blocks in the first UMF release, enhanced by respective
proper mechanisms. Therefore, the realization of UMF necessitates the specification of these components and
their interaction/interfaces between them and with NEMs.

The main goal of this deliverable is to provide a first complete functional specification of the UMF, regarding
the NEMs, the UMF core blocks and the relevant interfaces. Deliverable D2.2 shall be considered as the second
release of the UMF. The prioritization dictated by the QFD analysis in Deliverable 4.2 was taken into
consideration, ensuring that the respective prioritized requirements were addressed in this UMF release.
Moreover, the requirements/challenges that arose from “bottom-up” (requirements derived by the set of use
cases) and “top-down” (Unification & Federation, Governance, Embodiment/Network Empowerment, Service
orientation, Automation/Autonomicity/Self-x and Orchestration/Coordination) methodologies of the design
approach and the analysis of the state-of-the-art with respect to autonomic management/networking
architectures/frameworks and “horizontal requirements” (synonymous of a reposition of TMN FCAPS towards
the management functions of Future Networks), were addressed in this UMF release. This release will be
complemented by the next/final release, which will be an evolved and detailed UMF specification,
consolidating the developments of this release.

The document is structured as follow: Section 2 outlines the UMF functional decomposition and concisely
presents the main respective components. Section 3 presents the specifications of UMF core components and
NEMs, regarding their functions and their corresponding operations, as well as the relevant interfaces. Section
4 presents functional mechanisms that enable the realization of UMF core functionalities. Section 5 gives a
clear view of possible opportunities for contributions and actions in various standardization bodies/groups,
which is a prerequisite for industry adoption. Section 6 describes the UMF realization for the UC6 of operator-
governed, end-to-end, autonomic, joint network and service management, as an illustrative example of UMF
operation in practice. Section 7 presents how the requirements/challenges that arose from “bottom-up”, “top-
down” and “horizontal” methodologies of the design approach and the analysis of the state-of-the-art with
respect to autonomic management/networking architectures/frameworks were addressed in this UMF release,
along with the implied choices. Section 8 concludes the deliverable by summarising the outcomes of this
second release and by elaborating on the next steps. Finally, a number of annexes provides additional
information for several aspects of UMF as follows: Annex A provides a concise description of Restful UMF API;
and Annex B provides definition of the data, the terms and the models that were utilized in the deliverable.
References, Abbreviations and Definitions Sections are completing this document.

FP7-UniverSelf / Grant no. 257513 11

D2.2 — UMF specifications: Release 2

2 UMF overview

The rationale behind autonomics is to enable efficient and cost-effective management of networks and service
infrastructures for network operators and service providers. To this end, the management and operation tasks
are achieved through optimized autonomic functions, where each function is designed with a specific purpose:
an operational problem to be solved, a performance objective to be achieved and a network segment or
service infrastructure to be targeted. In order to highlight the role and importance of these functions, we
introduce the concept of: Network Empowerment Mechanisms (NEM). A NEM encapsulates as a management
application a self management function, basically a control loop or an autonomic algorithm/method. As such,
the design scheme behind each NEM can be outlined as follows: use the relevant autonomic method to solve a
concrete operational problem in a specific legacy networking environment or in future networks. NEM =
method + objective + context (this definition will be further elaborated and augmented later). As examples of
this triple, we can cite:
e Use of Bayesian inference (the method) for fault diagnosis (the objective) in FTTH environments (the
context), or
e Use of genetic algorithm (the method) for interference coordination (the objective) in LTE networks
(the context),
e .. Further examples can be found in WP3 deliverables.

This scheme relays on the usual research approach: identify a problem within a specific context and then
find/design the relevant method to address it as the basis of NEM’s implementation. However, when we have
to address the actual deployment of a NEM within a carrier-grade environment, further functional and non-
functional requirements come into play. This introduces the main role of the UMF, which can be characterized
by the following objectives: to enable a seamless integration and expandability (“plug & play” and “unplug and
play”) as well as to ensure a trustworthy interworking of NEMs within an operator's management ecosystem.
To this end, we need:
e Lifecycle tools to deploy, drive and track activity of NEMs.
e Systemic tools to identify/avoid conflicts, and to ensure stability and performance when several NEMs
are concurrently working.
e Tools to make NEMs find, formulate and share relevant information to enable or improve their
functioning.

Three UMF challenging supporting functions for all NEMs are realising the above: governance, coordination and
knowledge management. As a consequence, we introduce the concept of UMF core blocks in order to embody
these functionalities that should be offered in a UMF ecosystem. Figure 1(a) puts in the same picture all the
components at play: the three UMF core blocks (governance, coordination and knowledge), the NEMs and the
network/service elements (managed elements); while Figure 1(b) presents (just as illustrative examples) the
potential interactions between these components. To summarize, the NEMs are responsible for operating and
managing the network and service infrastructures, while the UMF core blocks are responsible of managing and
supporting the NEMs.

UMF is providing then the set of functional specifications that will make this integrated picture a reality, hence
focusing on: the functional decomposition of the UMF core blocks, the requirements on the NEM structure and
behaviour, the interfaces specification, as well as the workflows. The main scope of this document is to present
and explain this specification work.

FP7-UniverSelf / Grant no. 257513 12

D2.2 — UMF specifications: Release 2

UMF CORE

N,
A
[: | =
- !
" :
GOVERNANCE '} COORDINATION '} KNOWLEDGE :
= o]
T]
1
1
1
7
4
j1==
2=
=-i3
NEM_y
network
L G|
(a)
structure e M
— { 1'r1rs-!foce} specifications
+ tools
Businass ebjectivas,
) R
rutes Policy ..}
Request [...)
[] Info [..)
Policy [...) Raguest [..]
GOVERMAMNCE COORDIMNATION KNOWLEDGE
cfG ([..) Infe (..)
Oon (NEM_x, ...}
tdle (MEM_x, ...} - -
Config (NEM_x, ...} \
- On (NEM_y, ...} :
MANDATORY I/F ldle (NEM_y, ...)] — . Cutput (NEM_y, ...
:fr:::-&p’r?h& Adapt (NEM_y, ...} \ Register [NEM_y,

REGISTER [...}
______________ * to whom (7} coordination, governance NEM

MEM _x = wia { 7} knowledge =¥

« ID. copabillties, FSA, Predicores, QoEm

| | adaptor

! capabilities |

L behavior 1
predicores i natworl |

elemeant |

(b)

)

)

Figure 1. UMF overview and decomposition.

FP7-UniverSelf / Grant no. 257513 13

D2.2 — UMF specifications: Release 2

3 UMF functional specifications

3.1 Network Empowerment Mechanism (NEM)

First, it is important to provide a comprehensive definition of the NEM concept based on the elements and
discussion presented in the previous section (UMF overview):

NEM = A functional grouping of objective(s) + context + method(s) where “method” is a general procedure for
solving a problem. A NEM is (a priori) implemented as a piece of software that can be deployed in a (part of a)
network to enhance/simplify its control and management (e.g. take over some operations). An intrinsic
capability of a NEM is to be deployable and interoperable in a UMF context (e.g. an UMF compliant network).

Indeed, one of the key characteristic of UMF is to allow seamless deployment and trustworthy interworking of
multiple/independent autonomic functions that will (each) ease the life of network operators. Hence NEMs can
be developed by any actor of the telecommunication/networking market: equipment vendor, network
management system vendor, network operator, software developers, etc. For a given NEM, the actor, who
developed it, is hereafter named NEM developer.

The NEM-related specifications describe the constraints imposed by the UMF to any NEM. Hence a NEM
developer will make sure the software being developed complies with these specifications in order to
guarantee that the developed NEM is compliant with system instance of the UMF (i.e. deployable and
interoperable in a UMF context).

In this context, and in order to understand the specification work related to NEMs, it is required to distinguish
between the following concepts:

The specifications of NEMs, which constrain the behaviour of NEMs and define the generic part of their
interfaces with UMF elements,

A NEM class is a piece of software that contains the logic achieving a specific autonomic function. Such class is
deployed in a network running a UMF system and requires being instantiated on a set of concrete network
elements to effectively perform its autonomic function,

An instance of a given NEM class allows performing a given autonomic function onto a given sub-set of a
network. This is achieved by binding the code of a NEM class to a set of identified network
resources/equipments. This NEM instance is identified by an instance ID and its unique interface with the UMF.
This NEM instance at any given time is handling a set of identified network resources (this set can evolve with
time). Hence there may be multiple instances of a given NEM class inside the same network e.g. one per area).
A NEM instance is created by the UMF system in which it is being deployed. Moreover, a NEM instance is
managed by the UMF system as an atomic entity, while its internal functioning can rely on separated piece of
software running on different equipments, hence atomic NEMs are distinguishable from composite NEMs.
During runtime, the distinction between these two cases is minor (limited to some more flexibility for a
composite NEM regarding the flow of information), while regarding the instantiation of NEMs, the composite
NEMs are stressing more importantly the process than atomic ones.

Accordingly, distinguishing between the following machine-readable descriptions of the above concepts is also
required:

e A given NEM manifest describes a given NEM class. This description provides guidance to the network
operator in order to install and configure an instance of this NEM class — the goal of a NEM manifest is
similar to a datasheet). This description is issued by the NEM designer towards network operators,

e The grammar of a NEM manifest is a subset of UMF specifications describing which information MUST
and MAY be provided by the NEM developers in order to describe their NEM class and guide its
instantiation,

FP7-UniverSelf / Grant no. 257513 14

D2.2 — UMF specifications: Release 2

e A given NEM instance description describes a given instance of a given NEM class. This description is
issued by the NEM instance towards UMF system. This description is used for registration of the NEM.
It tells which information is monitored and which actions are taken.

The grammar of a NEM instance description, which is a subset of UMF specifications describing which
information MUST and MAY be provided by the NEM instance when starting (and when its settings are
changed) so as to register to the UMF system the:

e Capabilities of this NEM instance regarding information/knowledge sharing,
e Requirements of this NEM instance regarding knowledge inputs,
e Conflicts of this NEM instance with already running NEM instances of any NEM class,

A NEM mandate is issued by the UMF system to a NEM instance. This NEM Mandate is a set of instructions
telling which equipments MUST be handled by this NEM instance and which settings this NEM instance MUST
work with,

The format of the NEM mandate is a subset of UMF specifications describing which information MUST and
MAY be provided by the UMF system to the NEM.

To illustrate the previous definitions, let’s sketch a very simplified process used to start an autonomic function
(coming as a NEM class) inside a UMF system. First, somehow, the software corresponding to the NEM class is
being installed on the relevant machines/equipments (helped in this by the indications available in the NEM
Manifest). Second, the UMF is sending to this software the mandate to create a given NEM instance, which
process is completed by a NEM instance ready to register. Third, this NEM instance is sending its instance
description to the UMF system in order to complete registration. Once the registration is successfully
completed, the NEM instance is ready to start upon command from the UMF. This process is part of what we
call the NEM lifecycle.

This subsection provides a detailed specification of all these concepts. First we present the lifecycle of a NEM
instance with respect to UMF-compliant systems. Then, we present the information model of NEMs. Finally, we
detail the different phases of the lifecycle and the different NEM state descriptions associated to them.

3.1.1 Life-cycle of a NEM instance

A NEM from the moment that it is installed until the moment that it is uninstalled is following a given life-cycle,
which is specified below. Alike the life-cycle defined in OSGi for bundles, the NEM life-cycle describes the way a
NEM instance can be dynamically instantiated, started, activated, halted and stopped. A simplified version of
the NEM life-cycle and its different phases are presented in Figure 2.

FP7-UniverSelf / Grant no. 257513 15

D2.2 — UMF specifications: Release 2

st NEMwv2 /

createNewlnstance z "
[NEMSoftwarelnstalled] petcinstartisted
delete
® =0,
Initial j Final
enforceMandate
[instanceExist] revoke NEM
ready
updateMandate
setllp setDown
operational N

executeControlPolicy

o2

Figure 2. Simplified NEM instance life-cycle.

The NEM life-cycle consists of the following phases:

Prior to the set-up of a NEM, when it does not exist as an instance yet, the corresponding piece(s) of
software is (are) merely being installed on relevant machines, which may be used to create one or
more NEM instances.

VOID INSTANTIATED: In this first state, the NEM exits as an instance. This state is mandatory, for a
NEM instance to handle a MANDATE. The MANDATE is issued by the UMF system and determines the
network resources that will be managed by this instance. The MANDATE also defines the configuration
options1 applicable to this instance.

READY: In this state the NEM instance is fully deployed but not yet operating; the appropriate pieces
of software are activated on the corresponding network element and assigned to the network
resources described in the MANDATE. In this state the NEM instance is also registered to the UMF
core mechanisms (GOV, COORD & KNOW). All the dependencies of the NEM instance in terms of
required input information (KNOW) and needed relations with other NEMs instances are identified. As
a conclusion in this state, the NEM instance is known to the UMF.

OPERATIONAL: In this state the NEM instance is operational and works under the control of COORD
which is allow to set the working regime of the running instance on one of the following options:

o achieve or not all or a part of its acquisition of information,
update its learning,
run or not its decision process,

share or not all or a part of its knowledge,

O O O O

enforce or not all or a part of its actions.

The life-cycle above presents a high view of the states of a NEM. The following figure details the transitional

phases, to provide a more complete NEM life-cycle.

1
e.g. policies or constraints on behavior.

FP7-UniverSelf / Grant no. 257513

16

D2.2 — UMF specifications: Release 2

stm NEM /

instantiating
‘ createNewlnstance [NEMSoftwarelnstalled]
Initial N\

4 Undeploying \

[failedDeployment]

deploying
enforceMandate

{

void instantiated\

_7

updating
[successfuldeployment]
updatehandate
ready R registering
[successfulregistered]

setDown
SerP\\ [failedRegistration]

revokeNEM

operational \

executeControlPolicy Unregistering

i

Figure 3. Detailed NEM instance life-cycle (with transitions).

When being created a NEM instance reaches a specific sub-state of INSTANTIATED that is named VOID
INSTANTIATED. In this sub-state, the NEM instance is actually affected no MANDATE yet. The request named
CreateNEWinstance issued by GOV to create this new instance contains a unique instance ID, which will be
referred all along the NEM life. The reception of this request by the NEM instance will provide a temporary
management interface for the instance. The newly created instance will listen to this interface in order to
receive a MANDATE.

On reception of a MANDATE (from GOV), the NEM instance will organize itself to both handle the network
resources and perform its mission (DEPLOYING trans-state). Once the deployment is completed, the NEM will
achieve registration (REGISTERING trans-state), during which exchanges with GOV, COORD and KNOW will
register the NEM instance. Once the registration is completed, the NEM instance is on the READY state.

On reception of a SetUp command (from GOV), the NEM instance will notify COORD of it and then move to the
OPERATIONAL state.

On reception of a SetDown (from GOV), the NEM instance will abruptly stop all its processes, and then go back
to the READY state.

Finally, the UPDATING trans-state is a state that is reached any time a REGISTERED” NEM instance receives an
UPDATED MANDATE (from GOV). The NEM instance will get back to DEPLOYING.

On reception of a REVOKE (from GOV), the NEM instance will reach the VOID INSTANCE sub-state, , going
through the UNREGISTERING and UNDEPLOYING states, which means all the software components involved in
the NEM instance will be deactivated apart the main component. The NEM instance should be in the READY
state to handle a REVOKE.

On reception of a DELETE (from GOV) the NEM instance will disappear from the UMF system. The NEM
instance should be in the VOID INSTANTIATED state to handle a DELETE.

This NEM life-cycle has been designed after state of the art studies (e.g. OSGi and SOAP) and analysis of MS26
(Unification of the mechanisms embedding the UC methods) material and extended to cover the specificities

2 actually a NEM instance, which has completed the deploying phase

FP7-UniverSelf / Grant no. 257513 17

D2.2 — UMF specifications: Release 2

related to deployment of functions over distributed systems, knowing these functions can themselves be
distributed. The following sub-sections describes the initial phase of the lifecycle (NEM Manifest, NEM
Installation), the NEM Instantiation to reach the VOID INSTANTIATED state, the NEM Mandate to reach the
READY state and the NEM Instance Description to reach the OPERATIONAL state. Finally, the detailed
operations to transit from one state to another are presented at the end.

3.1.2 Information model of NEMs
class NEMLinkedToSID /

Root Business Entities
ABE::RootEntity :I Root Business
Entities ABE::

+ commonName: string Palic

+ description: string

+ objectiD: string Root Business Entities
<7 ABE::Specification

1 T

Root Business Entities ABE::Entity

ManagementAction

+ version: string <

NEMpolicy e
Resource ABE::Resource specifiedBy

+ usageState: int

applies
/ ManagementActionSpecification
+ contentType: Class

NEM + controlFlexibility: Enum
Root Business Entities ABE:: - +_descriptor:_String
ManagedEntity + managedResource: List<URI>
manages | + regime: Regime
+ managementMethodCurrent: int + state: NEMStates
+ managementMethodSupported: inf] + url: URL
advertises
? 1\
specifiedBy
ManagedEntitySpecification
1.+

NEMSpecification

atomicLoop: Boolean

id: NEMSpecID

isComposite: Boolean

manageableEntities: ListkManagedEntitySpecification>
possibleHost: List<OS>

releaseDate: Date

+ 4+ + + + o+

Figure 4. Inheritance of UMF information model from SID (NEM part).

Figure 4 depicts the SID root diagram from which we derive the NEM concepts. The RootEntity class defines the
necessary attributes that are common to define/select SID entities in the domain of service, resources as well
as Policy entities. The commonName attribute enables users of the SID to refer to an object using terminology
defined by their application-specific needs. The description attribute is an optional attribute that enables users
of the SID to customize the description of a SID object. The objectID attribute provides a unique identity to
each entity. The abstract class Entity extends the RootEntity class and represents the entities those play a
business function [30].

NEM is defined as an abstract class and extends the class Entity. The “manages” association shows the link to
the set of ManagedEntity managed by a given NEM.

The NEM policy is extending the SID policy class. It defines the set of policies that are applicable to a given
NEM.

Following the specification pattern from the SID, NEM and NEMPolicy classes have respectively classes for
NEMSpecification and NEMPolicySpecification. The specification classes describe the invariant part/information
of the entity, which enables the construction of an Entity.

FP7-UniverSelf / Grant no. 257513 18

D2.2 — UMF specifications: Release 2

class NEM Structure

HEM Specification

atomicLoop: Boolean

+ id: NEMSpecD

+ isComposite: Boolean identifiedBy - rapect)

+ possibleHost: List<0S5= 1. 1|+ name: String

+ releaseDate: Date + provider: String

+ wersion: int
wenumerations
MEMstates 1.
registered N
instantiated specifiedBy
starting P
Acting 1 defines 1
stopping -
waiting NEM HNEMComposite
' + managedResource: List<URI> <:]7+ mainComponent. NEMMainComponent
+ regime: Regime + slaveComponent: List NEMMainComponent
expose | © stater MEMActionAndPolicy
g |+ wrl: URL
Managementinterface | 1 1 T
1
ll_\ HEMMainComponent
HEMComponent
MEMAtomic [>
has + haost: Host

+ URL: iURI

0.1

kowledgeexchangelnterface

Figure 5. Representing the NEM structure in an information model view.

Figure 5 represents the structure of NEM. To start with a NEM is being specified by the attributes grouped in a
NEMSpecification. Hence a NEM Manifest is merely an xml file detailing the values for all these attributes. One
of the NEMSpecCharacteristics is the NEMspecID, which allows a unique identification of the “NEM class” in the
catalogue as it regroups 3 attributes, which are name, provider and version. A “NEM instance” is an object of
type NEM® exposing a management interface to be controlled by the UMF. A “NEM instance” is either atomic
or composite. An atomic instance of a NEM has centralized software, and runs on a single machine, while a
composite instance of a NEM has distributed software, and runs on more than one machine. This concept is
slightly different from the SID pattern as the NEMComposite is not composed of multiple NEMs but of multiple
NEMComponents, and a NEMAtomic is composed of a single NEMComponent. The NEMMainComponent is the
one handling the control tasks of the whole NEM, meaning it is responsible for managing the relation with UMF
Core Blocks and to ensure that the NEM instance as a whole is behaving accordingly to UMF instructions

A “NEM instance” is having attributes, which values are provided by either:
e The creation of the instance: Instance ID,

e The Mandate: the managedResources (the list of equipments or resources or services managed by the
“NEM instance”,

e Policies: the regime, etc...

e The functioning of the software of the NEM: the management interface and its URL, the
NEMComponents and their KnowledgeExchangelnterfaces, which can be used to exchange
information or knowledge with other UMF entities.

® An instanciation of the class NEM, here class refering to the class in the Information Model

FP7-UniverSelf / Grant no. 257513 19

D2.2 — UMF specifications: Release 2

class NEMPolicy /

Entity
NEM

- Policy Policy
managedResource: List<URI>
regime: Regime

state: NEMStates

url: URL

_ NEMpolicy NEMPolicySpecification
applies

+ o+ o+ o+

GenericNEMpolicySpec
‘ 1
e it correspondsto
specifiedBy configurationOptions
\\
1. AN
.

Specification

SpecificNEMpolicySpec ActionConstrainingPolicySpec

NEMSpecification

P

atomicLoop: Boolean
id: NEMSpecID
isComposite: Boolean

manageableEntities: List<ManagedEntitySpecification>

possibleHost: List<OS>

advertises

1.

1.*

RegimePolicySpec

releaseDate: Date

InformationExchangePolicySpec GSEE il

defaultType: String
rangelnterval: String
unitOfMeasure: string
validFor: String
valueFrom: String
valueTo: String

+ o+ o+ o+ o+ o+ o+

1

ReportingPolicySpec

Figure 6. Information model of Policies regarding NEMs.

Figure 6 is depicting the inheritance of Policies in the scope of NEMs. Actually the picture is hiding the
inheritance of policies, as it is redundant with the inheritance of PolicySpecifications (which means that for
each class of PolicySpecification there is a matching class of Policy).

First of all, all the policies are inheriting from NEMPolicy.

Then there are different types of policies:

GenericNEMPolicy is abstract, and represents all the kind of policies that are applicable to any NEM
instance, for which the format is defined by the UMF specification. The exact format of these policies
will be detailed in future releases of the UMF specifications.

RegimePolicies are sent by COORD to set the regime of the NEM instance. The regime corresponds to
the frequency and the modalities at which the MAPE loop of the NEM is to be run. Examples of these
could be: run once every 10min, run continuously, run now only once, run when such X condition is
true, etc...

ActionConstrainingPolicies are sent by COORD to set constraints on the actions taken by a NEM
instance. The goal of this can be to avoid some conflicts by providing a freedom frame to the NEM in
order to avoid overlaps with conflicting NEMs. The constraints can be either to disable some specific
actions, or to suspend the enforcement of the planned action to a validation by COORD or to constrain
the range in which a parameter can be set. The instance description of the NEM is used to determine
which subset of rules can be applied by the NEM (e.g. some NEM may provide no flexibility regarding
which actions can be disabled, hence this NEM exposes itself to be simply switched in a standby mode
by COORD).

InformationExchangePolicies are sent by KNOW in order to organize an exchange of
information/knowledge between UMF entities. When a NEM informs in its instance description that a
given piece of information can be shared, while another NEM informs in its instance description that
this same piece of information is needed to perform its analysis, then the role of KNOW is to organize

FP7-UniverSelf / Grant no. 257513 20

D2.2 — UMF specifications: Release 2

the subscription of the second NEM to the first one. The first one will not answer positively to any
demand if KNOW did not previously organize this flow by setting appropriate
InformationExchangePolicy (see workflows in section 3.3.4 Information Flow Establishment and
Optimisation function).

ReportingPolicies are specific InformationExchangePolicies sent by GOV to set the rules of reporting of
information from the NEM instance towards GOV.

SpecificNEMPolicies are policies, which are specific to a given NEM class. They are likely to tailor the
behavior of the NEM regarding the objectives of a NEM. E.g. such a policy can be for a traffic
engineering NEM a policy to set whether the objective of the traffic engineering is to save energy
consumption or to avoid contention. The format of such policies is not provided by the UMF, as each
NEM will have its specific. The UMF will provide a meta format, for the NEM to provide in
NEMSpecificPolicySpecifications the specific format of its actual SpecificPolicies. These
NEMSpecificPolicySpecifications are being advertised in the NEM Manifest.

class NEMInformation /

«enumeration»
Sl InformationUsage

Entity Root Business Entities ABE::
NEM Managementinfo

«enumeratio...

InfoType ExtemalMandatory

Acquired
+ mgmtinfoValidFor: TimePeriod knowledge Output
+ retrievalMethodCurrent: int rawData ExternalOptional

managedResource: List<URI>
regime: Regime

+ o+ o+ o+

state: NEMStates + retrievalMethodsSupported: string |
url: URL has
1 ecifiedBy
Specification
specifiedBy ManagementinfoSpecification

/) id
uses/provides - contentType: Class

- descriptor: String
- informationUsage: InformationUsage
1> - type: InfoType

+oF o+ o+ o+

atomicLoop: Boolean N — T)
id: NEMSpecID conten anagementinio UMFInformationSpecification

. 3 + isAggregated: boolean —

isComposite: Boolean + isAgaregationNeeded: boolean

manageableEntities: List<ManagedEntitySpecification> M mo?\igloerigna :re EZn: " info €2 + contentType: Managementinfo
possibleHost: List<OS> e, 9,I a | fy- on: st + context: Context

releaseDate: Date ypeOfMonitoringInformation: String + _name: int

Specification
NEMSpecification UMFInformation
Mir

i

NEMinformationSpecification

advertisesregisters

- ID: int

advertises

Figure 7. Information model of Information and Knowledge regarding NEMs.

Figure 7 depicts the inheritance of Information in the scope of the UMF in general and in the scope of NEMs
more specifically. UMFInformation objects are exchanged between UMF through one of the Knowledge
Exchange workflow (see workflows in section 3.3.4 Information Flow Establishment and Optimisation function).
A NEM can be at one or the two endpoints of such an exchange.

Figure 7 depicts three levels regarding information:

1.

ManagementIinformationSpecification: This level depicts the nature of the information, e.g. “Load of
link (in Bit/s)”. This class of the information model is used to build catalogues of information E.g. The
list of the nature of all the information acquired by a given class of NEM, which corresponds to the
Acquired_Inputs field of the NEM Manifest (see section 3.1.3), similarly for the following fields of the
Manifest: Optional_External_Input, Mandatory_External_Input and Available Outputs.

A NEM agnostic catalogue should be built to fill an ontology describing the relations between the
different entities of the network. This ontology could describe that “load of link (in %)” is related to
“link capacity” which is the “sum” of “ports capacity” “composing” the “link”. This ontology would be
used to help COORD identify conflicts between NEMs. The ontology should stay at the level of the
ManagementinformationSpec.

FP7-UniverSelf / Grant no. 257513 21

D2.2 — UMF specifications: Release 2

2. UMFInformationSpecification: This level designates exactly the information, e.g. “The load of the link
between router 1.1.1.1 and router 2.2.2.2”. This class of the information model is used to build
catalogues such as:

e the indexation in KNOW of all the available outputs of every NEMs (used to perform the
identification of the providing entity when organizing knowledge exchange with other UMF
entities — see workflows in section 3.3.4 Information Flow Establishment and Optimisation
function),

e theindexation in COORD of inputs of NEMs to identify conflicts with other NEMs,

e Instance Description disclosed by NEM instances when registering (which are then indexed by
COORD and KNOW - see needs above), namely the Available_Outputs,
Optional_External_Input, Mandatory_External_Input and Acquired_Inputs fields (see
section 3.1.6).

UMFInformationSpecification are extending the ManagementinfoSpecification with the context
attribute (in the above example the designation of the link: router 1.1.1.1 to 2.2.2.2). The context class
is taken from DEN-ng extensions disclosed in the following paper [1].

3. UMFInformation: This class represents the information actually exchanged through a Knowledge

Exchange Interface (see workflows in section 3.3.4 Information Flow Establishment and Optimisation
function). For this exchange to happen KNOW takes in charge its organization, which will be
materialized by an Information Policy (see Figure 6).
This is a class inheriting from Managementinformation (defined in SID) that is being specified by an
UMFInformationSpecification. This is then a Managementinformation enriched with a context (in
order to know that the load which is 70% is actually referring to the link between router 1.1.1.1 and
router 2.2.2.2.). The actual value is of any sub-class of Managementinformation as defined in SID. The
ManagementIinformationSpecification is actually describing with its attribute contentType which sub-
class of Managementinformation will be used to describe the value of the UMFInformation.

class NEMAction /
ManagementinfoSpecification
ManagementAction ifi ManagementActionSpecification
g specifiedBy - contentType: Class
O contentType: Class - descriptor: String
+ controlFlexibility: Enum - informationUsage: InformationUsage
+ descriptor: String - type: InfoType
advertises
advertise\
NEMActionSpecification NEMSpecification
controlStatus: Enum + atomicLoop: Boolean
target: Context + id: NEMSpecID
+ isComposite: Boolean
+ manageableEntities: List<ManagedEntitySpecification>
* + possibleHost: List<OS>
+ releaseDate: Date
ecifies 1%
advertises specifiedBy
1
NEMAction DUt
+ actionValue + maﬂagfedRes@urce: List<URI>
+ executionStatus: String/Enum t * reglme. el
+ executionTime: Date executes |+ Séll_te- NEMStates
+ method: ManagementMethodEntity | 1..* I L URL

Figure 8. Information model of Actions regarding NEMs.

Figure 8 depicts the inheritance of Actions in the scope of the UMF in general and in the scope of NEMs more
specifically. NEMActions are executed by NEMs onto ManagedEntities (resources or services). These
correspond to the change in settings of the services or equipments that NEMs are performing.

FP7-UniverSelf / Grant no. 257513 22

D2.2 — UMF specifications: Release 2

Specifically, it depicts three levels regarding the actions:

1.

3.1.3

ManagementActionSpecification: This level depicts the nature of the action, e.g. “Switch on/off a
port”. This class of the information model is used to build catalogues of actions e.g. the list of the
nature of all the actions potentially performed by a given class of NEM, which corresponds to the
Possible_Actions field of the NEM Manifest (see section 3.1.3).
A NEM agnostic catalogue should be also used to complete the ontology describing the relations
between the different entities of the network. This ontology could describe that “switching on/off a
port” is changing “link capacity” if “port” is “composing” the “link”.
NEMActionSpecification: This level designates exactly the action, e.g. “Switch on/off the port 12 of
router 1.1.1.1”. This class of the information model is used to build catalogues such as:

e the indexation in COORD of actions of NEMs to identify conflicts with other NEMs,

e Instance Description disclosed by NEM instances when registering (which are then indexed by

COORD and KNOW - see needs above), namely the Possible_Actions field (see section 3.1.6).

NEMActionSpecification are extending the ManagementActionSpecification with the context attribute
(in the above example the designation of the port 12 of the router 1.1.1.1). Alike the
UMFInformationSpecification, the context class is taken from DEN-ng extensions.

NEMAction: This class represents the action actually performed by the NEM. It then contains the
value of the action, which in our above example can be either On or Off. The NEMActionSpecification
describes (with its controlStatus attribute) which is the allowed control of this action, while the
ManagementActionSpecification describes (with its controlFlexibility attribute) which are the allowed
control of this kind of action (this property only depends on the flexibility offered by the NEM designer
at implementation time). The usage of these control level are explained in section 3.1.8 NEM’s
Relations with Coordination.

NEM Manifest

A NEM class is being described by its Manifest, which is machine readable. This Manifest provides information
(such as the type of network equipments that can be handled, the identification of the NEM class) for the
operator to deploy the NEM in its infrastructure. This Manifest could be used:

as soon as a NEM is purchased, as it contains most of the technical details of the NEM,
when organizing the network management in order to determine the NEM deployment map,
at deployment time, in order to generate the Mandate that will be sent to the NEM instance,

any time during the life of a NEM instance.

Table 1. Format of NEM Manifest

Field Name Type Description
ID NEM Spec ID To have a unique identifier of the NEM class
Name | String Name of the NEM class
Provider ID | String Name of the NEM developer (name of the company)
Version | Int[] Version of the NEM

Release Date Date Date of release of the NEM

Features String Text field used to describe what is the feature achieved by
the NEM

User Guide URL URL Optional - Used to have a link onto a web server providing
guidance for the use of the NEM

Possible Hosts List<OS> Lists the OS on which the NEM (or more precisely the NEM
Component) can be installed

Manageable Entities List<Managed Lists the type of equipments/services that can be managed

EntitySpecification> by the NEM
Is Composite Boolean Depicts whether the NEM is atomic or composite
Is Atomic Loop Boolean Depicts whether the algorithm of the NEM works as a single

FP7-UniverSelf / Grant no. 257513

23

D2.2 — UMF specifications: Release 2

control loop or as a set of cooperating control loops. (This
information makes sense in order to achieve joint
optimization, then the NEM delegates its utility function to a
UMF mechanism, in case a NEM is set to false there, then it
will delegate a set of local utility functions).

Acquired Inputs List<Management Lists the nature of information acquired by the NEM itself
InfoSpecification>

Optional External Inputs List<Management Lists the nature of information that the NEM should receive
InfoSpecification> from KNOWLEDGE (directly or indirectly)

Mandatory External | List<Management Lists the nature of information that the NEM must receive

Inputs InfoSpecification> from KNOWLEDGE (directly or indirectly)

Available Outputs List<Management Lists the nature of information that can be provided by the
InfoSpecification> NEM to any UMF entity. This list does not repeat what can

be deduced from the other fields of the manifest, i.e. every
acquired input can be shared.

Possible Actions List<Management Lists the nature of actions that the NEM can apply onto the
ActionSpecification> managed entities

Configuration Options List<Specific Lists the configuration options that can be applied to the
NEMPolicySpec> NEM. The NEM specific policies must be depicted here.

Hereafter is an indicative example of the information which comprises a NEM Manifest, namely for the Green
TE NEM.

<eu.univerself.nem.Manifest>
<NEMspecID>
<Name>Green TE</Name>
<Provider>StylianosCorp</Provider>
<Version>1.0.0</Version>
</NEMspecID>
<Features>This NEM is achieving a Traffic Engineering function that is saving
energy consumption of an IP network. It selects links and ports to be put
into sleep based on traffic demand and link utilization/connectivity
constraints.</Features>
<releaseDate>2012-07-23 11:25:32.647 UTC</releaseDate>
<UserGuideURL>www.stylianoscorp.com/support/GreenTE</UserGuideURL>
<isAtomicLoop>true</isAtomicLoop>
<isComposite>false</isComposite>
<PossibleHosts>
<0S>Unix0S</0S>
</PossibleHosts>
<ManageableEntities>
<ManagedEntitySpecification>ALU SAR7705</ManagedEntitySpecification>
<ManagedEntitySpecification>ALU 7710</ManagedEntitySpecification>
<ManagedEntitySpecification>ALU SR7750</ManagedEntitySpecification>
<ManagedEntitySpecification>Cisco CRS-1</ManagedEntitySpecification>
<ManagedEntitySpecification>Cisco CRS-2</ManagedEntitySpecification>
<!—Relatively to the tag <ManagedEntitySpecification> to be accurate there,
this XML file is providing an id field of a ManagedEntitySpecification, this
id field allowing to pick the proper managedentityspecification from the
corresponding catalogue -->
</ManageableEntities>
<AcquiredInputs>
<!—Relatively to the tag <ManagementInfoSpecification> for sake of
readibility of the example, it is just a lightweight version that has been
provided here, the full format contains attributes, which are being
described in the information model, namely : descriptor, contentType,
informationUsage and type -->
<ManagementInfoSpecification
contentType="EthernetPortInfoSpecification">Description of router
port (ID, capacity)</ManagementInfoSpecification>
<ManagementInfoSpecification
contentType="IPInterfaceInfoSpecification">Description of router
interface (ID, capacity, List<Ports ID>, IPQ)
</ManagementInfoSpecification>
<ManagementInfoSpecification contentType="Numeric">Load of router interface
</ManagementInfoSpecification>
<ManagementInfoSpecification contentType="List<LSA>">Routing Table
</ManagementInfoSpecification>
</AcquiredInputs>

FP7-UniverSelf / Grant no. 257513 24

D2.2 — UMF specifications: Release 2

<OptionalExternalInputs>
<ManagementInfoSpecification contentType="Numeric">Prediction of router
interface load </ManagementInfoSpecification>
</OptionalExternalInputs>
<PossibleActions>
<!—Relatively to the tag <ManagementActionSpecification> for sake of
readibility of the example, it is just a lightweight version that has been
provided here, the full format contains attributes, which are being
described in the information model, namely : descriptor, contentType,
controlFelxibility —-->
<ManagementActionSpecification contentType="Boolean">Switch ON/OFF Ethernet
port </ManagementActionSpecification>
<ManagementActionSpecification contentType="Boolean">Switch ON/OFF IP
interface </ManagementActionSpecification>
<ManagementActionSpecification contentType="Numeric">Change metric of IP
interface </ManagementActionSpecification>
</PossibleActions>
<ConfigurationOptions>
<SpecificNEMPolicy>
<name>GreenTimelyThreshold</name>
<description>Minimal time under which no-switchoff will occur
</description>
<defaultValue>15</defaultValue>
</SpecificNEMPolicy>
<!--This is just an example, as the internal format of these policies is not
specified yet-->
</ConfigurationOptions>
</eu.univerself.nem.Manifest>

3.1.4 NEM Installation and Instantiation

The initial phase consists of installing the piece of code of a NEM onto the relevant hosts. At least 3 different
scenarios can be considered for that:

1. The code of the NEM is embedded inside the controller of a given type of network
equipments/resources,

2. The code of the NEM is manually4 copied by a network operator into hosts inside the network. The
hosts can be servers or network equipments allowing uploads,

3. The code of the NEM is copied into a specific GOV repository, from where it will be autonomously
copied to the relevant hosts.

The UMF release 2 is not specifying any of these installation scenarios, but the creation of a new NEM instance
is specified hereafter. Once being installed on the hosts, a kind of “code loader” will take part in the creation of
the instance as its role is to handle a CREATE NEW INSTANCE command from GOV and to load the required
components of NEM. For this purpose:

e A NEM MUST be provided with its code loader.
e Acode loader SHOULD be capable of creating more than one instance of a given NEM class.

e A code loader MAY have the capability to load more than one class of NEMs (as long as GOV
associates the code loader to each of these NEMs).

e There MAY BE more than one code loader for a given NEM class.
1. GOV MAY know more than one loader,

2. Each loader MUST have the intrinsic capability to communicate with other loaders of the
same NEM class,

3. Each loader SHOULD be capable to communicate with any loader of this NEM class activated
in the system covered by the same UMF, restrictions may come from:
= The structure of the communication infrastructure may block this communication,
= Lack of awareness of other loaders (installation of the loader does not impose an

exhaustive knowledge of any other loaders of the same class, though this is
preferred.

4 Manually, may mean either physically or remotely.

FP7-UniverSelf / Grant no. 257513 25

D2.2 — UMF specifications: Release 2

e GOV MUST know (the interface of) at least one code loader of this NEM class in order to create a NEM
instance of a given NEM class.

e When receiving the NEW INSTANCE command, the code loader MUST create a VOID INSTANCE, which
means:

1. It MUST at least provide an answer to GOV indicating an interface on which GOV CAN send
the NEM MANDATE,

2. This interface MUST BE capable of handling a NEM MANDATE of this NEM class and MUST
respond negatively to a NEM MANDATE of a different NEM class.

A CREATE NEW INSTANCE message is actually a specific case of a NEM INSTANTIATION/DELETION message that
follows the format described below:

Table 2. Format of NEM INSTANTIATION/ DELETION message

Field Name Type Description

Class ID NEM Spec ID The identification of the NEM class

Instance ID Integer The unique ID provided by the UMF to identify this NEM
instance.

Action ENUM This field is used to communicate the action that can be
either: NEW INSTANCE or DELETE INSTANCE.

Then the “NEM loader” is responding with a message following the format below:

Table 3. Format of NEM INSTANTIATION/DELETION response message

Field Name Type Description

Instance ID Integer The unique ID provided by the UMF to identify this NEM
instance

Result ENUM States whether the action was successful or not

Management @ URI The address of the NEM Management interface, this field is
optional, as it contains content only when the response is
successfully answering to a NEW INSTANCE action

3.1.5 NEM Mandate

A NEM mandate is issued by the UMF system to a NEM instance. This NEM Mandate is a set of instructions
telling which network equipments MUST be handled by this NEM instance and which settings this NEM
instance MUST work with.

Table 4. Format of NEM Mandate

Field Name Type Description

GOV@ URI To exchange with GOV UMF Block

COORD@ URI To exchange with COORD UMF Block

KNOW@ URI To exchange with KNOW UMF Block

Managed Entities List<URI> Listing all the equipments/services that the NEM has to
handle, monitor, optimize, etc... after being successfully
deployed.

Configuration Options List<Policy> Listing chosen values for generic or specific options

Hereafter an indicative example of the information comprised in a NEM Mandate, namely for the creation of a
Green TE NEM instance.
<eu.univerself.nem.Mandate>

<Instance ID>356789456</Instance ID>
<GOV_address>1.1.1.1</GOV_address>

FP7-UniverSelf / Grant no. 257513 26

D2.2 — UMF specifications: Release 2

<COORD address>2.2.2.2</COORD address>
<KNOW address>3.3.3.3</KNOW address>
<Instance ID>356789456</Instance ID>
<ManagedEquipments>
{127.100.50.1 , 127.100.50.5 , 127.100.50.15 , 127.100.50.19 ,
127.100.50.36}
<!--The 3 first happen to be ALU SR7750 and the 2 last happen to be Cisco
CSR-1.-->
<!--This is a lightweight format to provide a list of URIs, this could
alternatively be expressed as
<URI>127.100.50.1 </URI> etc...
-—>
</ManagedEquipments>
<Configuration Options>
<SpecificNEMPolicy>
<name>GreenTimelyThreshold</name>
<value>10</value>
</SpecificNEMPolicy>
<ReportingPolicy>
<ReportInterval>30</ReportInterval>
</ReportingPolicy>
<!--These are just examples, as the internal format of these policies are
not specified yet-->
</Configuration Options>
</eu.univerself.nem.Mandate>

The deployment of a NEM instance MUST happen accordingly to the MANDATE. When receiving the MANDATE
the NEM instance is not even deployed. There may be more than one possible host for the code of the NEM,
there may be multiple ones working together.

Following what is depicted in the life-cycle of a NEM (see section 3.1.1), a NEM Mandate can be sent to a NEM
instance, when:

e The NEM Instance is void instantiated; then the MANDATE is enforced as being a completely new one.

e The NEM instance is in the Ready state; then the previous MANDATE is updated with the content of
this mandate. As this may imply redeploying and reregistering of the NEM, this operation cannot
happen while a NEM may be actually working under the control of COORD, which prevents the update
of a MANDATE in the Operational state.

The MANDATE determines a list of network equipments. The installation phase had already determined a set of
hosts capable of running a software component of the NEM class. The deployment of a given NEM instance
corresponds to:

e finding suitable hosts (machines to run the software component on and where the code loader can
start the code),

e activating in these hosts the software component(s), (role of the code loader)
e associating to those a sub-set of the equipments,
e additionally, federating these software components into a unique entity by the selection of a leader,

This process may change the interface of the NEM, as it MUST be the interface of the leading software
component. This new interface will be advertised through registration inside the instance description.

3.1.6 NEM Instance Description

A given NEM instance description describes a given instance of a given NEM class. This description is issued by
the NEM instance towards the UMF system. This description is used for registration of the NEM. It tells which
information is monitored and actions are taken by this specific NEM instance.

FP7-UniverSelf / Grant no. 257513 27

D2.2 — UMF specifications: Release 2

Table 5. Format of NEM Instance Description

Field Name Type Description

Class ID NEM Spec ID The identification of the NEM class

Instance ID Integer The unique ID provided by the UMF to identify this NEM
instance.

Management @ URI The address of the NEM Management interface.

Acquired Inputs

List<NEMInformation
Specification>

Lists the information acquired as inputs by the NEM
instance (without the UMF system)

Optional External Inputs

List<NEMInformation
Specification>

Lists the information that the NEM instance should receive
from KNOW (directly or indirectly)

Mandatory External

Inputs

List<NEMInformation
Specification>

Lists the information that the NEM instance must receive
from KNOW (directly or indirectly)

Available Outputs

List<NEMInformation
Specification>

Lists the information that the NEM instance can share with
any other UMF entity. This list does not repeat what can
be deduced from the other fields of the instance
description, i.e. every acquired input can be shared.

Possible Actions

List<NEMAction
Specification>

Lists the actions that the NEM instance can apply

Hereafter the reader can find an indicative example of the information comprised in an Instance Description,
namely after the creation of the Green TE NEM instance that received the mandate example provided in

section 3.1.5.

<eu.univerself.nem.InstanceDescription>

<NEMspecID>

<Name>Green TE</Name>

<Provider>StylianosCorp</Provider>
<Version>1.0.

</NEMspecID>

<Instance ID>356789456</Instance ID>

<AcquiredInputs>

0</Version>

<NEMInfoSpecification>
<descriptor>Description of router port(ID, capacity)</descriptor>
<contentType>EthernetPortInfo<!--ID of a ManagementInfoSpec-->
</contentType>
<informationUsage>Acquired</informationUsage>
<type>RawInfo</type>

<context>{127.100.50.1//all ,

127.100.50.5//all , 127.100.50.15//all ,

127.100.50.19//all1 , 127.100.50.36//all}</context>
<controlStatus>Enabled</controlStatus>
</NEMInfoSpecification>
<NEMInfoSpecification>
<descriptor>Description of router interface (ID, capacity, List<Ports

ID>,

IPQ)</descriptor>

<contentType>IPInterfaceInfo<!--ID of a ManagementInfoSpec-->

</contentType>
<informationUsage>Acquired</informationUsage>
<type>RawInfo</type>

<context>{127.100.50.1//all ,

127.100.50.5//all , 127.100.50.15//all ,

127.100.50.19//all , 127.100.50.36//all}</context>
<controlStatus>Enabled</controlStatus>
</NEMInfoSpecification>
<NEMInfoSpecification>
<descriptor>Load of router interface</descriptor>
<contentType>Numeric</contentType>
<informationUsage>Acquired</informationUsage>
<type>RawInfo</type>
<context>{127.100.50.1//all1 , 127.100.50.5//all , 127.100.50.15//all ,
127.100.50.19//al1l1 , 127.100.50.36//all}</context>
<controlStatus>Enabled</controlStatus>
</NEMInfoSpecification>
<NEMInfoSpecification>
<descriptor>Routing Table</descriptor>
<contentType>Listé<LSA></contentType>
<informationUsage>Acquired</informationUsage>

FP7-UniverSelf / Grant no. 257513

28

D2.2 — UMF specifications: Release 2

<type>RawInfo</type>
<context>{127.100.50.1 , 127.100.50.5 , 127.100.50.15 , 127.100.50.19 ,
127.100.50.36}</context>
<controlStatus>Enabled</controlStatus>
</NEMInfoSpecification>
</AcquiredInputs>
<OptionalExternalInputs>
<NEMInfoSpecification>
<descriptor>Prediction of router interface load</descriptor>
<contentType>Numeric</contentType>
<informationUsage>External Optional</informationUsage>
<type>Knowledge</type>
<context>{127.100.50.1//all , 127.100.50.5//all ,
127.100.50.15//all}</context>
<controlStatus>Resolved - Enabled<!--Means KNOWLEDGE found an UMF
entity to provide this knowledge to this NEM instance-->
</controlStatus>
</NEMInfoSpecification>
<NEMInfoSpecification>
<descriptor>Prediction of router interface load</descriptor>
<contentType>Numeric</contentType>
<informationUsage>External Optional</informationUsage>
<type>Knowledge</type>
<context>{127.100.50.19//all , 127.100.50.36//all}</context>
<controlStatus>UnResolved<!--Means KNOWLEDGE did not find an UMF entity
to provide this knowledge to this NEM instance-->
</controlStatus>
</NEMInfoSpecification>
</OptionalExternalInputs>
<PossibleActions>
<NEMActionSpecification>
<descriptor>Switch ON/OFF Ethernet port</descriptor>
<contentType>Boolean</contentType>
<controlFlexibility>{Enabled, Disabled,
Intercepted}</controlFlexibility>
<controlStatus>Disabled</controlStatus>
<target>{127.100.50.1//al1l1 , 127.100.50.5//all ,
127.100.50.15//all}</target>
</NEMActionSpecification>
<NEMActionSpecification>
<descriptor>Switch ON/OFF Ethernet port</descriptor>
<contentType>Boolean</contentType>
<controlFlexibility>{Enabled, Disabled,
Intercepted}</controlFlexibility>
<controlStatus>Enabled</controlStatus>
<target>{127.100.50.19//all , 127.100.50.36//all}</target>
</NEMActionSpecification>
<NEMActionSpecification>
<descriptor>Switch ON/OFF IP interface</descriptor>
<contentType>Boolean</contentType>
<controlFlexibility>{Enabled, Disabled}</controlFlexibility>
<controlStatus>Disabled</controlStatus>
<target>{127.100.50.1//2l1l1 , 127.100.50.5//all , 127.100.50.15//all ,
127.100.50.19//al1l , 127.100.50.36//all}</target>
</NEMActionSpecification>
<NEMActionSpecification>
<descriptor>Change metric of IP interface</descriptor>
<contentType>Numeric</contentType>
<controlFlexibility>{Enabled, Disabled,
Constrained}</controlFlexibility>
<controlStatus>Disabled</controlStatus>
<target>{127.100.50.1//all , 127.100.50.5//all , 127.100.50.15//all ,
127.100.50.19//all1 , 127.100.50.36//all}</target>
</NEMActionSpecification>
</PossibleActions>
</eu.univerself.nem.InstanceDescription>

FP7-UniverSelf / Grant no. 257513 29

D2.2 — UMF specifications: Release 2

3.1.7 NEM Deletion

A DELETE INSTANCE message is actually a specific case of a NEM INSTANTIATION/DELETION message that
follows the format described in Table 2.

3.1.8 NEM'’s Relations with Coordination

In practice COORD is controlling the NEM to insure orchestration with other NEM instances and avoid conflicts
with other NEM instances. The following paragraph details some specific aspects and mechanisms relevant to
the control of NEMs by COORD.

First COORD is working with the identification of atomic conflicts between NEMs. This is done by looking at
Instance Descriptions of NEMs.

Then COORD is picking conflict avoidance strategies for group of atomic conflicts.
Then COORD is controlling the behaviour of NEMs by enabling and disabling some subsets of the NEMs

In parallel, COORD is applying orchestration policies that drive the way some NEM instances should be
triggered after other NEM instances. This will be translated into regime policies (see Figure 6).

Hereafter is a list of refinements that can be provided to the NEM instance descriptions. This paragraph details
how some specific sub-classes of either UMFInformationSpec or ActionSpec types can be used to identify
specific type of inputs or outputs. Coordination is likely to use this in order to perform conflict avoidance, and
also to determine the proper type of conflict avoidance strategy.

e Regarding the possible outputs ((UMFInfoSpecification)) of NEMs, they could make use of the
following specific sub-format derived from the Information Model (see Figure 7):

o utility of a NEM,

analytical function of the NEMs’ utility,
predicted utility,

description of an action completed,

description of an action to be completed,

O O O O O

typical period of the NEM,
o other (aka generic or undefined)

e Regarding the possible actions produced by NEMs, they could make use of the following specific sub-
format derived from the Information Model (see Figure 8):

o Set parameter value: then specify the parameter name, id (equipment/interface targeted),
range

o Populating a network DB: then specify the DB name, id, and kind of fields that can be
populated

o other (aka generic or undefined)

e Regarding the possible NEMSpecificPolicySpecifications, they could make use of the following specific
sub-format derived from the Information Model (see Figure 6):

o Weighting factor of the utility function, (should provide range or possible values)

To better understand the relation between the NEMs, UMF in general and COORD in particular, it is worth
depicting the different time scales at which the NEM is behaving (see Figure 9). The smaller time scale is the
time-scale of a cycle of the MAPE autonomic loop of the NEM. Then a bigger time-scale is the period during
which COORD is not modifying the control onto the NEM (neither changing the regime nor the action
constraints). Then even bigger time-scale is the period during which GOV is setting the NEM in the ready state
(see section 3.1.1 Life-cycle of a NEM instance). While the biggest time-scale is the period during which a NEM
instance exists. Some of the coordination mechanism will only play with the control of the NEM, while
mechanisms like joint optimization are interfering with the NEM at each MAPE cycle (e.g. in order to receive
the predicted utility).

FP7-UniverSelf / Grant no. 257513 30

MAPE of

a NEM instance

D2.2 — UMF specifications: Release 2

Control of Activation of
aNEM instance aNEM instance Deployment of
by COORD by GOOV a NEM instance

>
>

Growing Time scale

Figure 9. Different time scales of a NEM

Table 6 indicates the NEM mechanisms used by the existing coordination strategies (see section 4.3.1
Optimization and conflict avoidance mechanisms):

Table 6. NEM mechanisms used by COORD depending on the coordination strategy.

Setting NEM EDri]stblllinng/ Enforcing the | NEM Setting range
runtime providing & action to the | receiving to
. NEMs
regime knowledge . NEM knowledge parameters
actions
Random
X
token
Time « Typical
separation period
SOuP X Predicted X
utility
Joint Utility, (Utility
S X . X X
Optimisation function)
Future 5 3
strategies?

Table 7 provides the main lines of an algorithm to determine which coordination strategy to pick depending on
the properties of the conflicting NEMs.

Table 7. Criteria for determining which coordination strategy is applicable to which NEM.

Strategy

Conditions on NEM

Random token

Applicable to any NEM

Time separation

Applicable to any NEM that can share its typical period

SOuP

Applicable to NEMs, which are capable of:
Providing their predicted utility

Enabling/disabling the enforcing of their action

Joint Optimisation

Applicable to NEMs, which are capable of:
Providing their utility,
Disabling their work,

Have a single action, which is of the type set parameter value

Future strategies

Unknown yet

3.1.9 Description of the operations for state transitions

The operations that enable a NEM to go from one state to another state of its lifecycle are described

thereafter.

Operation Name

getState

FP7-UniverSelf / Grant no. 257513 31

D2.2 — UMF specifications: Release 2

Description

Retrieves the current state of the NEM.

Constraints

The NEM itself must establish "happens-before"
relationships between asynchronous operations that
change and/or retrieve its state.

List of input data

List of output data

state : NEMState, the current state of the NEM, the
values can be: READY, OPERATIONNAL, DEPLOYING,
REGISTERING, = UNREGISTERING, = UNDEPLOYING,
UPDATING, VOID INSTANTIATED

List of non-functional requirements

Operation Name

getManifest

Description

Retrieves the manifest of NEM class.

Constraints

List of input data

List of output data

manifest : NEMManifest, the NEM's manifest
(see section 3.1.3)

List of non-functional requirements

Operation Name

enforceMandate

Description

Sets the mandate for the NEM (see Section 3.1.5).

It will validate the addresses of the core blocks
contained in the mandate as well as the configuration
options to be set, and will return corresponding
codes in the case of error.

In case a mandate has already been set to the NEM, it
will be updated with the new one while any missing
fields of the new mandate will be filled-in by the
corresponding values of the previous mandate.

This operation will trigger the NEM's deployment and
registration.

Constraints

Previous mandate has to be already enforced to the
NEM in case of missing fields.

The NEM has to check option values that require
registration change and re-register when necessary.

The mandate object might or might not be covering
or releasing additional managed equipment.

List of input data

mandate : NEMMandate, the mandate to enforce
(see section 3.1.5)

List of output data

result : ActionResult, the result of the operation,
containing one of the following codes, as well as
Additionallnfo whenever applicable:

ActionResultCode Condition/Descripti
on
OK Successful

mandate setting.

FP7-UniverSelf / Grant no. 257513

32

D2.2 — UMF specifications: Release 2

INVALID_MANDATE_AD One of the CORE

DRESS addresses specified
in the mandate is
unreachable.
Additionallnfo in
this case specifies
which one it is.

CFG_OPT_NOT_SUPPOR The mandate

TED specifies a
configuration
option not
supported by this
NEM.

Additionalinfo in
this case specifies

the missing

option's name.
VALUE_NOT_ALLOWED The mandate

specifies a

configuration
option value that is
not allowed.
Additionalinfo in
this case specifies
the option's name.
DEPLOYMENT_ERROR An error occurred
during deployment
of the NEM.
Additionallnfo in
this case contains
debug information.

REGISTRATION_ERROR* An error occurred

during the
registration of the
NEM.

Additionalinfo in
this case contains
debug information.

*Note that this error code might occur during the re-registration
of the NEM because of a configuration option value change that
requires re-registration (see
ConfigOptionDescription.RequiresRegistrationChange field)

List of non-functional requirements

After a call to this method the NEM might need to re-
deploy and re-register.

Operation Name

getMandate

Description

Retrieves the mandate that has been set to a NEM
using enforceMandate or null if no mandate has been
set.

FP7-UniverSelf / Grant no. 257513

33

D2.2 — UMF specifications: Release 2

Constraints

The NEM must make sure all the mandate fields
regarding configuration options and the managed
equipment are up-to-date.

List of input data

List of output data

NEMMandate (see section 3.1.5)

List of non-functional requirements

Operation Name

revokeMandate

Description

Revokes any mandate applied to the NEM.

This operation will cause the NEM to undeploy and
unregister. All subsequent calls to "getMandate" will
return null, and the NEM will reach the
"VOID_INSTANTIATED" state upon completion of the
operation.

If the NEM is already in the "VOID_INSTANTIATED"
state, this operation has no effect.

Constraints

List of input data

List of output data

result : ActionResult, the result of the operation,
containing one of the following codes, as well as an
"Additionallnfo" instance whenever applicable:

ActionResultCode Condition/Description
OK Successful mandate
revocation.

OK_WITH_WARNINGS Successful mandate
revocation but one or
more of the
interested parties
could not be notified
(e.e. COORD or
KNOW).

Additional Info in this
case contains debug
information.

List of non-functional requirements

Note that there is no reason for which a NEM will not
go to the state "VOID_INSTANTIATED" after this
operation. Even if, for instance, COORD or KNOW s
down and cannot be notified of the NEM's stopping.

Operation Name

setUp

Description

Activates a NEM to start operating.

Constraints

The NEM must be on the "READY" state during a call
to setUp.

If that is not true during a call to setUp, error
"NEM_NOT_READY" is returned.

List of input data

List of output data

result : ActionResult, the result of the operation,

FP7-UniverSelf / Grant no. 257513

34

D2.2 — UMF specifications: Release 2

containing one of the following codes, as well as
Additionallnfo whenever applicable:

ActionResultCode Condition/Description
OK Successful activation.

NEM_NOT_READY Returned upon a call to
activate the NEM while
it's not in the "READY"
state. Additionalinfo
contains the current
state of the NEM.

List of non-functional requirements

Operation Name

setDown

Description

Deactivates an operating NEM so that it reaches the
"READY" state.

Constraints

The NEM might be in any state during a call to
setDown.

If the NEM is not in the "OPERATIONAL" state during
a call to setDown, the operation has no effect, and
the current state is returned along with a warning
indication in the result.

List of input data

List of output data

result : ActionResult, the result of the operation,
containing one of the following codes, as well as
Additionallnfo whenever applicable:

ActionResultCode Condition/Description

OK Successful
deactivation.

OK_WITH_WARNING Returned upon a call
to deactivate the NEM
while it's not in the
"OPERATIONAL" state.
Additionalinfo
contains the current
state of the NEM.

List of non-functional requirements

Operation Name

executeControlPolicy

Description

Commands a NEM to execute the specified control
policy.

Constraints

The NEM has to be in the "OPERATIONAL" state
during this invocation, otherwise an error is returned.

List of input data

policy: ControlPolicy, the policy object to be
executed.

List of output data

result : ActionResult, the result of the execution,
containing one of the following codes, as well as
Additionallnfo whenever applicable:

FP7-UniverSelf / Grant no. 257513

35

D2.2 — UMF specifications: Release 2

ActionResultCode Condition/Description

OK Successful execution.
ERROR_NOT_OPERA Returned whenever
TIONAL this operation s

invoked and the NEM
is not in the
"OPERATIONAL" state.

OTHER_ERRORS..... Y
OR....WARNINGS

List of non-functional requirements

Operation Name

delete

Description

Revokes the NEM's mandate and deletes the
instance, hence it terminates any process it is running
in, thus, releasing any resources associated with the
NEM.

This method has the exact same effect of
"revokeMandate" plus it causes the NEM to
terminate after the revocation is completed.

Constraints

List of input data

List of output data

(see output of "revokeMandate")

List of non-functional requirements

(see NF requirements of "revokeMandate")

Operation Name

addStateTransitionListener

Description

Subscribes a listener to be notified of state change
events.

Constraints

List of input data

listener: StateTransitionEventListener, the instance to
notify of state changes.

List of output data

List of non-functional requirements

If the listener is already in the list, this operation has
no effect.

Operation Name

removeStateTransitionListener

Description

Unsubscribes a listener of state change events.

Constraints

List of input data

listener: StateTransitionEventListener, the instance to
remove from the list of listeners.

List of output data

List of non-functional requirements

If the listener is not in the list, the operation has no
effect.

FP7-UniverSelf / Grant no. 257513

36

D2.2 — UMF specifications: Release 2

3.2 Governance block

Governance is a way to control and manage networks that integrate autonomic capabilities. The aim of
governance is to allow the human operator to pilot his network through high levels business objectives that is
without the need of having deep technical knowledge of the network. Governance also offers an autonomic
oriented network and service view to the operator with a two-fold mission: delivering the status of network
resources and deployed services, report on the ability of autonomic applications to fulfil the business goals. The
provided governance operations can be used to design a “look and feel” Human to Network tool that will
enable the operator access in a more intuitive way the network view of its interest.

Alike any other UMF Core Block, GOV is also implementing at least a KnowledgeExchangelnterface in order to
receive and provide flows of information under the control of the Information Flow Establishment and
Optimisation function of KNOW (see section 3.3.4).

List of Governance block functions:
e Human to Network Interface
e Policy Derivation and Management
e NEM Management

e Enforcement

3.2.1 Human to Network Interface

The Human to Network Interface function provides a friendly way of creating and editing policies using a high
level business language. It is the main communication channel between UMF and the human operator.

The main functionality of the H2N interface is to provide a tool for the human operator to insert high-level
business objectives, which will be later on translated autonomously into technology-specific terms so that the
human operator does not need to deal with any technical details. High level objectives may be related to the
introduction of a new application, sets of user classes for the application, sets of Quality of Service (QoS) levels
for each user class of the application, etc. These high-level objectives/policies need to be further propagated to
the network going through a set of levels (related to different aspects of the management of a communications
network) and be transformed into lower level policies so that they reach the element(s) in which to be
enforced in terms of low level, technology-specific commands. Consequently, the already set business goals are
forwarded to the Policy Derivation & Management block in order be translated from service requirements into
network configuration (technology-specific terms) and leave the system to autonomously work out the
situation and meet the objectives. The H2N interface also allows feedback, e.g. the result of diagnosis or a
visualization of the monitoring to the system administrator/operator.

List of “Human to Network Interface” operations:

High Level Parameters Definition, Service Definition, Network & Service Supervision

Name High Level Parameters definition

Description High-level parameters definition block allows the
composition of high level parameters for a given
service, network operation, group of services or
group of network operations. For instance, the
human operator can define that Gold users using
streaming service should experience excellent levels
of availability, reliability, speed and security.

Constraints

List of input data Performance parameters

List of output data Business policies

List of non-functional requirements

FP7-UniverSelf / Grant no. 257513 37

D2.2 — UMF specifications: Release 2

Name

Service definition

Description

Service definition allows the specification of
operator’s parameters:, type of service, network
technologies, user classes, available levels of
availability, reliability, speed and security, etc.

Constraints

List of input data

Service attributes

List of output data

Service

List of non-functional requirements

Name

Network and Service Supervision

Description

Network & Service supervision function allows the

visualization of the network topology, status and
alerts. As deduced from Milestone 25, “Human
factors in network management”, one of the
demands of human operators concerns the
supervision of the functioning of the autonomic
network, a factor that is closely related to trust. In
general, the request was a tool able to provide the
information required at the first sight, but with the
possibility of getting more detailed information when
needed. Tools should also provide trustworthy
information and of an appropriate amount. They
should also be usable so that there is not much
manual work and provide access to all equipment
that should be supervised.

Constraints

List of input data Network monitoring information :
ServiceStatisticallnfo, ResourceStatisticallnfo,
Performance, ResourceStatelnfo, ServiceStatelnfo

List of output data N/A (visualization of input data)

e good graphical user interface, which should
provide the information required at the first
sight, but there should be a possibility to get
more detailed information when needed

e easytouse

List of non-functional requirements

It is worth noting that these operations can be implemented in a dedicated graphical user interface, or
alternatively can be implemented as interfaces to the existing OSS and BSS systems of the operator.

3.2.2 Policy Derivation and Management function

The Policy Derivation and Management (PDM) function is in charge of (i) providing facilities for the policies
edition and storage (insertion, modification, retrieval and removal of policies) (ii) translating business language
to more specific policy language statements, (iii) checking whether the different policies have conflict, (iv) in
case conflicts appear, resolve them according to the well-defined conflict resolution mechanisms, and, finally
(v) ensuring cohesion between different forms of policies at different levels of abstractions.

Translation is typically done through a set of levels (related to different aspects of the management of a
communication network) and produces as its final output a set of lower level policies that can be understood
and interpreted by NEMs (the so-called NEM policies). Three translation levels were adopted and defined as
follow:
e “Business level” which correspond to “Market, product & customer” of eTOM (policies related to
Strategy, Infrastructure and Product (SIP) and Operations (OPS) processes).

FP7-UniverSelf / Grant no. 257513 38

D2.2 — UMF specifications: Release 2

e “Service level” which correspond to “Service” of eTOM (policies related to Service management and
operations processes of OPS).

e “NEM level” which correspond to “Resource” of eTOM (policies related to Resource management and
operations processes of OPS).

The levels in parallel with eTOM business process framework levels are represented in Figure 10.

Policy levels in parallel with Enhanced Telecom Operations Map
(eTOM) business process framework levels

Market, product &
1 . 4
&ls"]ess 'WEI POIIaes E
Service level Policies m /T‘

NEM Policies E ‘ Resource ‘

Figure 10. Policy levels of UniverSelf approach in parallel with eTOM business process framework levels.

As illustrated in Figure 11, the “Business level” policies are technological/administration oriented and
technology independent, the “Service level” policies are service oriented and technology independent and the
“NEM” policies that are technology dependent. The NEM policies are then enforced onto the corresponding
NEMs, which in turn will transform them to device-specific commands (in most cases, vendor specific
commands) and enforce them into their managed network elements that belong to any of the network
segments. This latest translation is handled by the vendor specific wrappers developed inside the NEMs.

The specification of this number of policy levels enables policy continuum and the operations described above
should be performed in each level of the policy continuum. Hence, we suggest an operational layered
structure, where each layer corresponds to a level of the Policy Continuum.

: . ‘) Technological /Ad ministration
oriented, technology independent

m m==) Service oriented, technology
Service level Policies

independent

NEM Policies Technology dependent

Access Backhaul Core
Network Network Network

Figure 11. Policy content per level.

Once a policy is created at any of the policy continuum level, it must be analyzed for correctness through a
dedicated process (syntactic analysis). Then, the newly created policy should also be analyzed for conflicts
detection. If the policy does not conflict with existing policies at the same level, it is translated into policies of
the lower level. The outlined process is repeated, until the derivation of NEM policies.

The policies must be expressed using the SID policy model. SID defines Event-Condition-Action (ECA) policies,
that is, an Event triggers the invocation of the rule, and if the condition is satisfied, then the action is carried

FP7-UniverSelf / Grant no. 257513 39

D2.2 — UMF specifications: Release 2

out. Figure 12 and Figure 13 shows the representation of a policy rule and policy structure in UMF. A summary
of SID Policy Model is provided in Annex B.

class PolicyRule /

{bag}

+_policyEventBase 0..*

Policy Event Entities::

Collection

ContainsEventSets

+ hasEventEvaluated: int=

+_policyEventBasel 0..1

+_policyRuleBase

+_policyRuleBase

PolicySet

{bag}
+_policyEvenBasel\ | .~ Np.1
{bag} {bagk
EveannglgerDelalls
—Policy

+_policyCondition

1.
{bag}

Policy Framework::PolicyRuleBase

PolicyActionRuleDetails
A Yy

+_policyAction 0.
{pbag}

+_policyAction
_policy, c

Details
Policy Action Entities::

0.
ditionRuleDetails = ———><]
{pag}
{pbag}

+

+

hasSubRules: boolean = FALSE
isCNF: boolean = TRUE

0.* 1.

PolicyGroupExecutjonDetails

i

{pag} {bag}

+_policyAction1 0..1
{bag}

Policy Condition Entities::
PolicyCondition

ContainedPolicyConditionDetails

0.
* {bagy el PolicySetSpec]|
(FOL Eiifies SpecifiesPolicyRule Policy Framework Spec Entities
Policy Framew ork:: PolicyRule PolicyRuleSpec
1.1
p
{pag} {pag} + executionStrategy: int =2
+ policyActionSelectCriteria: string
+ policyConditionSelectCriteria: string
+ policyEventSelectCriteria: string
+ sequencedActions: int=1
RootEntity’
Policy Framework::Policy
~J
+ keywords: int
+ policyName: string
«UMF»
y
NEM:: «UMF»
NEMPolicySpecification| ReportingPolicy

Figure 12. Representation of a PolicyRule.

class PolicyStructure /

+_pol

Policy Condition Entities::
PolicyCondition

Policy

icyCondition

SpecifiesPolicyCondition

1.1
{bag}

ContainedPolicyConditionDetails

Policy Condition Entities::
PolicyConditionComposite

+ conditionIsCNF: boolean = TRUE

Policy Condition Entities

::PolicyConditionAtomic

+ conditionSequenceNumber: int

+ hasEvaluated: int=0

+ hasSubConditions: boolean = FALSE

+_pol

0.1
{bag}

<>

Specification
Policy Framework Spec Entities::
PolicyConditionSpec

Policy
Policy Statement Entities::
PolicyStatement

icyStatement

Figure 13. Representation of PolicyStrusture.

List of “Policy Derivation and Management” operations:

Build Business Policy, Create Policy Entry, Retrieve Policy, Update Policy, Delete Policy, Validate Policy, Detect
Policies Conflicts, Translate Policy, Check Feasibility & Optimize, Policy Efficiency

Operation 1

Build Business Policy

FP7-UniverSelf / Grant no. 257513

40

D2.2 — UMF specifications: Release 2

Description

Build Business Policy from High Level Objectives

(HLO) or High Level Parameter (HLP)

Constraints

HLP/HLO are provided by BSS operator via a

specialised human to network GUI.

List of input data

Performance parameters

List of output data

Business Policy

List of non-functional requirements

N/A

Note: This operation could be realized at the BSS level

Operation 2

Create policy entry

Description

Create policy in the policy repository

Constraints

Precondition: policy repository address available.

List of input data

Policy description

List of output data

Notification (Ok/nOK)

List of non-functional requirements

Operation 3

Update policy

Description

Update the policy content

Constraints

Precondition: policy exists in the repository

List of input data

Policy description/format

List of output data

Notification (Ok/nOK)

List of non-functional data

Operation 4

Delete policy

Description

Delete a policy from the policy repository

Constraints

Precondition: policy exists in the repository.

List of input data

NEM 1D, Policy ID/policy criteria
NOTE: NEM ID is used to delete all its policies

Policy criteria: corresponds to research criteria.

List of output data

Notification (Ok/nOK)

List of non-functional requirements

Operation 5

Retrieve policy

Description

Retrieve policy from repository

Constraints

Precondition: policy exists in the repository.

List of input data

NEM ID/Policy ID/Policy criteria
NOTE: NEM ID is used to retrieve all its policies

Policy criteria: corresponds to search criteria.

List of output data

Policy List that matches the criteria.

Empty list if no policy matches the criteria.

List of non-functional requirements

Operation 6

Validate policy

Description

Validate the correctness (in terms of syntax and

FP7-UniverSelf / Grant no. 257513

41

D2.2 — UMF specifications: Release 2

values) of a policy

Constraints

List of input data

Policy

List of output data

Boolean indicating whether the Policy is syntactically
valid or not.

List of non-functional requirements

Operation 7

Detect policy conflicts

Description

Detect conflicts between policies applicable to a NEM

Constraints

Preconditions: more than one policy exists in the
Policy repository.

List of input data

Policy list or NEM ID

List of output data

Boolean, Conflicted Policy list

List of non-functional requirements

Operation 8

Resolve policy conflicts

Description

Resolve policy conflicts using the appropriate
resolution mechanisms.

Constraints

Precondition: Policy conflicts detection returns a
positive value(Boolean=true)

List of input data

Conflicted Policy list

List of output data

Conflict-free Policy list

List of non-functional requirements

Operation 9

Translate policy

Description

Translate business policies to service policies to NEM
policies.

Constraints

Precondition: Must be called on a list of conflict-free
policies.

List of input data

conflict-free (business or service) Policy list

List of output data

Service policy list or NEM Policy list

List of non-functional requirements

Operation 10

Check Feasibility & Optimize

Description

For each generated policy (business level or service
level), it analyses the current status of the network
and the available resources, diagnoses potential
problems and decides if some kind of optimization
should be done for the network to accommodate the
requests defined by the policy. For instance, in case
the human operator wants to deploy a new service,
the Assess Policy Feasibility & Optimize operation is
asked to accommodate the request onto the
network.

Constraints

List of input data

List of conflict-free Policies (business level or service
level)

FP7-UniverSelf / Grant no. 257513

42

D2.2 — UMF specifications: Release 2

List of output data List of Policies and feasibility report

List of non-functional requirements

Name Policy Efficiency

Description Assess the successful translation of high level to low
level policies, that is, if the derived policies
accomplish the goals described by the operator in the
high level policies. A successful policy will lead to well
controlled and efficient network operations, while an
unsuccessful policy may lead to misconfigurations,
QoS / QoE degradation and network instabilities.
Thus, a mechanism able to evaluate the policy
translation process and measure the gains from the
policy application is necessary. The success of a policy
in accomplishing the goals described by the operator
is in strong relation with the trustworthiness of this
specific policy. Trust of policy can be defined as a
comparison between the reference behaviour (the
behaviour implied in high level policies) and the
actual behaviour (based on measurements) of the
network after the implementation of the policy.

List of input data Network monitoring information :
ServiceStatisticallnfo, ResourceStatisticallnfo,
Performance, ResourceStatelnfo, ServiceStatelnfo

List of output data Policy trustworthiness estimation: List of {Policy,
Trust index of the policy}

List of non-functional requirements

Following the previously mentioned layered structure, the Create policy, Validate policy, Detect policy conflicts,
Resolve policy conflicts, Translate policy, Check feasibility & Optimize and Policy Efficiency must take place at
each of the levels of the policy continuum.

3.2.3 NEM Management

The “NEM Management function” collects and stores in the NEM registry all the management information of
the deployed NEMs. It also manages the state transition (including the activation and deactivation of the
autonomic control loops) of the NEMs and defines the reporting strategy that meet the operator needs. The
reported information is also forwarded to the Policy Derivation and Management function and can therefore
be used to trigger more relevant policies given the network on-going situation.

List of “/NEM Management” operations:

Create NEM entry, Delete NEM entry, Retrieve NEM information, Update NEM information, Build reporting
strategy, Send Reporting strategy, Evaluate Deployed Policies, Create NEM Instance

Operation 11 Create NEM entry
Description Insert INSTANCE ID into the NEM registry
Constraints Pre-condition: NEM registry address available

Post-condition: updated NEM registry

Create, Retrieve, Update, Delete (CRUD) operations
must be provided by data storage system

List of input data INSTANCE ID or List of INSTANCE IDs

List of output data Notification(Ok/nOK)

FP7-UniverSelf / Grant no. 257513 43

D2.2 — UMF specifications: Release 2

List of non-functional requirements

Operation 12

Delete NEM entry

Description

Delete NEM entry from the NEM registry and the
corresponding NEM information (mandate, instance
description)

Constraints

Pre-condition: The NEM to be removed must have
been previously stored in the registry

CRUD operations must be provided by data storage
system

List of input data

INSTANCE ID or List of INSTANCE IDs

List of output data

Notification(ok, Error if NEM not in registry)

List of non-functional requirements

Impact versus dependant NEMs

Operation 13

Retrieve NEM information

Description

Get NEM information (report/log) according to
reporting strategy.

Constraints

Pre-condition: INSTANCE ID and information
previously stored in the registry/database

Warning: request size or returned information
volume

List of input data

reportingPolicySet or reportingPolicy, INSTANCE ID or
List of INSTANCE IDs

List of output data

Content of the reporting strategy according to
reportingPolicySet(see Figure 6 page 20)

List of non-functional requirements

Performance aspects wrt to request and returned
information size

Operation 14

Update NEM information (status, mandate)

Description

Updates the status of a NEM in the NEM registry

Constraints

Pre-condition: The NEM to be updated must have
been previously stored in the registry

Post condition: updated NEM information(new status
or new mandate enforced)

Create, Retrieve, Update, Delete operations must be
provided by data storage system

List of input data

INSTANCE ID or list of INSTANCE ID

List of output data

Notification(ok, Error if NEM not in registry)

List of non-functional requirements

Impact versus dependant NEMs,

Stability issues

Operation 15

Build reporting strategy(=PolicySet)

Description

Build/create reporting strategy composed by several
reporting policies

Constraints

Policy edition operation must be provided by the
PBM system.

FP7-UniverSelf / Grant no. 257513

44

D2.2 — UMF specifications: Release 2

List of input data

Reporting policies

List of output data

Reporting strategy Set<ReportingPolicy>

List of non-functional requirements

Operation 16

Send Reporting Strategy

Description

Send reporting strategy to the NEM

Constraints

List of reporting strategies contains ALL reporting
strategies that the NEM must apply.

List of reporting strategies replaces the previous
reporting strategies.

List of input data

List of PolicySet, ID or list of INSTANCE IDs

List of output data

Notification (ok, nok, ...)

List of non-functional requirements

Operation 17

Create NEM Instance

Description

Create a NEM instance in the network elements in
which the NEM software is stored

Constraints

The NEM software is stored in the network element
or a proxy

List of input data

NEMspecID (see 3.1.4)

List of output data

Notification(OK/NOK)

Operation 17

Set Up a NEM

Description

Activates a NEM to start operating (see Section 3.1.9)

Constraints

The NEM must be on the "READY" state during a call
to setUp.

If that is not true during a call to setUp, error
"NEM_NOT_READY" is returned.

List of input data

List of output data

the result of the operation (OK/NEM_NOT_READY)

Operation 17

Set Down a NEM

Description

Deactivates an operating NEM so that it reaches the
"READY" state (see Section 3.1.9)

Constraints

The NEM might be in any state during a call to
setDown.

If the NEM is not in the "OPERATIONAL" state during
a call to setDown, the operation has no effect, and
the current state is returned along with a warning
indication in the result

List of input data

List of output data

the result of the operation (OK/OK_WITH_WARNING)

FP7-UniverSelf / Grant no. 257513

45

3.2.4 Enforcement function

D2.2 — UMF specifications: Release 2

Enforcement encapsulates the communication mechanism between Governance and NEMs. It allows the other
functions of the Governance block to be independent of the communication aspects for the interconnection
with NEMs. The communication between the GOV functions and NEMs is mainly achieved through the

MANDATE object.

List of operations: Generate NEM Mandate, Send NEM Mandate

Operation 18

Send NEM Mandate

Description

Sends a new Mandate to a given NEM. This operation
is used for instance to change the activity phase of a
given NEM.

Constraints

List of input data

Mandate (see 3.1.5

List of output data

Notification (OK/NOK)

List of non-functional requirements

Operation 19

Generate NEM Mandate

Description

Generates a new Mandate to a given NEM. Receives
a list of policies to be enforced to a NEM, retrieves
the mandate from the NEM registry, embeds into it
the new policies and enforces it into the
corresponding NEM.

Constraints

List of input data

Policies, NEM ID

List of output data

Mandate (see 3.1.5)

List of non-functional requirements

The sequent activity diagrams (Figure 14 -16) illustrate GOV operation and interaction with the other UMF

core blocks.

FP7-UniverSelf / Grant no. 257513

46

D2.2 — UMF specifications: Release 2

Business Operator Governance Knowledge

Received High Level Parameters

Set High Level Parameters

| Build Business Poli
High Level Parameters @
Translate Busi Policy to Service Poli
faNs/GBLUsNOSSE CICHEg VLS R OReY! Information/Knowledge Exchange\
o0
T iy

Check Feasability & Optimize \
Getrieve Service Related Knowledgg)

Analyse Service Related Knowledgﬁ l
_Gend Service Related Knowledg?

o2

Send Notification
® ()@T

Cranslate Service Policy to NEM PolicD

Check Feasability & Optimize
if knowledge does not exist
Getrieve MNetwork Related Knowledg;\
lif knowledge available
Gnalyse Metwork Related Knowledge ise“ ool Relosd rowe dg?

o2

C Send Motification) . i>

®

Figure 14. NEM policy definition activity diagram.

In the NEM policy definition activity diagram, the Business Operator sets his high level parameters representing
a set of objectives that the network should meet (operation: High Level Parameters definition). These high
level parameters are transformed into Business Policies (operation: Build Business Policy). GOV checks the
correctness of the policy (operation: Validate policy) and transform the Business policy into Service policy
(operation: Translate policy). GOV then controls the correctness of the Service policy (operation: Validate
policy), and assesses the feasibility of the new Service policy (operation: Check Feasibility & Optimize). This

FP7-UniverSelf / Grant no. 257513 47

D2.2 — UMF specifications: Release 2

assessment operation triggers the KNOW block to ask for information about the current status of the network
and the available resources (GOV-KNOW interface). When it gets the related information/knowledge, it then
analyses the ability of the network to handle the requirements defined in the Service policy. If the control
process diagnoses that the service policy cannot be performed, then the GOV sends the appropriate
notification to Business Operator with the result of the analysis, the feasibility report. If the control concludes
that the Service policy is feasible (probably after the completion of relevant optimization actions from involved
entities), then the service policy is translated to NEM policy (operation: Translate policy). After the control of
NEM policy correctness (operation: Validate policy), GOV checks again its feasibility (operation: Check
Feasibility & Optimize) and request again from KNOW, information about the status of the network and the
available resources. In case any of the operations fails, a notification is sent to the human operator. The final
outcome of the policy derivation activity is a list of NEM policies.

Figure 15 presents the activity diagram corresponding to the NEM instantiation activity:

Human operator GOVERMANCE MNEM (Loader) KNOWLEDGE

Update NEM Reqistry

; o 0]

DefineNEMPolicy
o0

Registry updated event received Registry updated event

(Request instance creation) Instantiate

NEM instantiated event received NEM instantiated event

Instatiation ok? /\k

NOT OK OK

® = { send notification

€9

Figure 15. NEM instantiation activity diagram.

For a NEM policy to be deployed and enforced, the corresponding NEMs must have been already instantiated
in the network., Figure 15 illustrates the workflow of a NEM instantiation triggered by the action of enforcing a
NEM policy. Once a new NEM policy has been defined, it goes into the process of enforcement. Prior to this,
the NEM registries are updated with the new information. Then, GOV sends to the corresponding NEM loader
the instruction to create an instance (GOV-NEM interface, operation: Create NEM Instance). A notification is
sent back to the GOV block to report on the action. (GOV, interface: Send Notification) (NEM deployment
activity diagram) The instantiated NEM is therefore ready to receive and interpret its policies. These policies
are used to issue a MANDATE by the “Generate Mandate” and “Send Mandate” operations of the
“Enforcement” function and sent to the corresponding NEM.

Figure 16 illustrates the activity diagram of the NEM configuration that can be achieved only through the
MANDATE.

FP7-UniverSelf / Grant no. 257513 48

D2.2 — UMF specifications: Release 2

GOVERNANCE MNEM

Define NEM Policy
fee]

Is NEM in ready or void instantiated state?

Notification to Know

new Mandate received

SetfRevi
]

Create New NEM
Mandate message,

Unregister NEM

e
Notification to Coord i

revoke

Does Mandate releases equipts?

Set Down a NEM
e

Does Mandate cqvers additional equipts?

yes
Release equipment
Deploying over add. Equip
yes

Is deploynjent successfull?
YES :>

Reqgister NEM e
o0
(Undeploy NEM :

Send Notification

Notification to Gov
Update OK?
Set up NEM
[e el

Update NEM Registry

Show Alert in H2M

Figure 16. Update Mandate activity diagram.

Once GOV defines/derives a conflict-free NEM policy, it examines if the corresponding NEM is in a ready mode.
If it is not, GOV sets down the NEM (interface GOV-NEM: Set NEM Status) to bring it in a “READY” mode. When
GOV accomplishes this procedure or if the NEM is in ready, then GOV creates new NEM mandate message
(operation: GenerateNEM mandate) and sends it to NEM (interface GOV-NEM: Send NEM mandate). In case
some problem prevents the NEM to self-configure itself according to the mandate, the NEM status in NEM
registry is updated (operation: Update NEM information) and a notification is sent to GOV block. If the NEM
deployed the new demanded status, then GOV starts up the NEM ((interface GOV-NEM: Set NEM Status).

FP7-UniverSelf / Grant no. 257513 49

D2.2 — UMF specifications: Release 2

Hurnan Operatar GOY HEM COORD
Activate/Deactivate NEM Activation/Deactivation Order Received

Send upfdown message UpfDawn message received

Graceful stopping/starting

Successful

(Generate Completion Message)

Natify COORD of changed state

Error

—

Generate Error Message

(Update the dynamic part of instance descriptions inside NEM reg\stry>

Send Message

@ £ Send Notification \

Figure 17. Change NEM operational state diagram.

When Human Operator decides that he wants to change the operational state of a NEM (activate/deactivate),
he sends the respective command to GOV (Human operator —GOV interface, operation: Change NEM status).
When GOV receives the command, send to the NEM the respective message, to set its operational state to
up/down (GOV-NEM interface, operation: Set NEM state).. When the change of the operational state is
accomplished, GOV sends the respective notification to human operator.

The following figure depicts the registration phase of a NEM, which just deployed after receiving a Mandate.
The NEM is sending its instance descriptions to the interfaces of KNOW, COORD and GOV specified in the
Mandate it had received. These UMF core blocks are checking that GOV pre-registered this NEM (to avoid
savage NEM deployments). These UMF core blocks are then storing the instance descriptions or at least the
information relevant for them, before acknowledging the instance description (see sections 3.1.5 and 3.1.6 for
the mandate and instance description formats).

FP7-UniverSelf / Grant no. 257513 50

Release 2

D2.2 — UMF specifications

pasaisibas se Asansibal WIN 23epdn

Buasiban | : xoz’ Apead [130

Bsyy By pagalduio ajesauas e,

LondLIsaq aURISUI WIN 34015 u

651y *Ba pajalay agesauas

Amzm_, 6oy sey aaUeIsUl WaN v_um_._uIE_ﬁ_Emo sauessUl 3Ry)

C

‘abessayy puag

By B2y pagaidun ajesauas,

sapuspuadaq aBPaMOUY 3A0SY

1

C

uondusaq 33URISU WaN 21015

G5y ‘b payalay ajeiauas,

Parsbar-aid 5 303U WAN P uondinsaq aaURIsU] aAEIEY

G5y By pajaidun) ajesauas,

uonduasap aauelsul N 34015

paaysibai-aid 5| aUe3sUl AN PaYD

aBessaly puag

b5y “Gan papalay ajeiauas,

uondunsaq a0URTSUT aARIRY

[Aingssanangpaioidaq]

104435532305 J0 AOD AJROU

sty Bay pajaduind AL | payd

uondanai abiessaus 2 e

Uondinsaq BRI PUSS)

MONA

qdo0d

3N Buniaisibay

Figure 18. Register NEM activity diagram.

51

FP7-UniverSelf / Grant no. 257513

D2.2 — UMF specifications: Release 2

3.3 Knowledge block

The UMF Knowledge Block (KNOW) is a unified Information and Knowledge Management System. It is a critical
part of the UMF since it plays the role of information / knowledge collection, aggregation, storage/registry,
knowledge production and distribution across all UMF functional components (i.e., NEMs and Core blocks).

List of Knowledge block functions:
e Information Collection & Dissemination —ICD
e Information Storage and Indexing - ISI
e Information Processing and Knowledge Production - IPKP

e Information Flow Establishment and Optimization - IFEO

3.3.1 Information Collection & Dissemination function

The Information Collection and Dissemination (ICD) function is responsible of information collection, sharing,
retrieval and dissemination. An overview of the ICD function is shown in Figure 19.

Governance W
) I

——
A—— _ r—
Reguest Information D:;::;::i:n ion > NEM
Collection Algorithme Configuration & Information [Acting upon
—_—D Constraints Knowledge Querying Knowledge
Update Information {through pub-sub, example)
Collection Configuration push or pull) _
Enforcing
Collect Data / lDecision
Tlnformarion
Information Update Information
tiezyants I Collection Constraints Metwork

-
NEM
(Sharing
Information
Example)

T Collect Data /

Information

Network

Figure 19. Overview of the Information Collection and Dissemination Function.

The KNOW block handles information from the NEM and eventually form the other Core blocks level and
above, produces higher information abstractions and organizes communication of information and knowledge.
The ICD function is the front-end of the KNOW block, handling all information exchange between the UMF
functional components namely the GOV and COOR core blocks and the NEMs.

These functional components are acting as sources or sinks of information. The sources subscribe to ICD by
exposing which type of information they will produced and also the requirements that are associated to this
information (frequency, ...). On the one hand, each information source should subscribe information availability
and the equivalent collection constraints (e.g., the supported granularity of collection). On the other hand,
each information sink should subscribe information retrieval requirements with a similar process. The
subscription process takes place during the NEM registration (or update) level and is elaborated in the
information subscription workflow diagram. The matching of constraints with requirements takes place during
an equivalent negotiation process, part of the Information Flow Establishment and Optimization function,
elaborated later. The focus of the KNOW block on high information abstractions allows proactive information
flow configurations, ready to be instantiated whenever the UMF components need them.

FP7-UniverSelf / Grant no. 257513 52

D2.2 — UMF specifications: Release 2

Information can be directly retrieved from or shared with the KNOW block from a UMF component using the
appropriate interface (i.e., the Knowledge Exchange Interface). Furthermore, an information collection process
is triggered from a component requesting the information, through the ICD function and using the same
interface. Then the ICD function will have to collect such information (i.e., pre-processed or not) from the
Information Storage and Indexing function (if a historical value of it is present), or it may have to request a
suitable Knowledge building NEM to provide such a forecast, and then that particular knowledge building NEM
will in turn request the network and/or the KNOW for furnishing the values of specific context data. The
information collection process is optimized by the Information Flow Establishment & Optimization (IFEO)
function, by e.g., the latter defining filtering objectives and setting appropriate accuracy objectives to be
followed by ICD; more details are given in the respective function description. Example information exchanges
using the pull and pub-sub methods are illustrated in the knowledge exchange workflows in the end of the
section.

The collected information may either be directed to the Information Processing and Knowledge Production
function for a further processing (e.g., aggregation) and then indexed / optionally stored to the Information
Storage and Indexing function or indexed / optionally stored directly to the latter function. The storage option
within Information Storage and Indexing may be provided or demanded based on the nature of the
information, NEM demands, optimization goals, etc. After this stage, the information or produced knowledge
could be passed back to the ICD function for dissemination. More details on the interactions between the ICD
and the ISI function can be found in the next subsection.

The ICD KNOW function supports a Redirect mode. The basic information communication mode between NEMs
and KNOW imply a proxy-mode of interaction, where all interactions are handled via the KNOW. However, we
also specify a Redirect mode where the KNOW can redirect information querying NEMs towards the
appropriate resources (or other NEMs) for direct interaction (i.e., bypassing the KNOW). This process may
involve the Coordination block too. The interested NEMs (via the Coordination block or not) may request such
direct communication from the KNOW. Another approach is to allow the IFEO function to enforce such direct
interactions transparently, for optimization purposes.

All ICD algorithms (e.g., for collection or dissemination) can be configured from the Governance block. This
process gives flexibility to the KNOW infrastructure to meet new information manipulation demands, as soon
as they arrive. At this stage of work, we explore a number of algorithms or methods (i.e., discussed in the ICD
mechanisms subsection) but the selection and grouping of methods to specific contexts will be considered in
the last version of the deliverable.

List of “Information Collection and Dissemination” operations:

Information collection, Information sharing, Information retrieval, Information dissemination

Operation 1 Information collection

Description The KNOW block is collecting information from a
number of NEMs according to the information
collection requirements and should meet certain
information collection constraints. Information
collection could be one of four types: (i) 1-time
queries, which collect information that can be
considered static, e.g., the number of CPUs, (ii) N-
time queries, which collect information periodically
for a certain number of times, (iii) continuous
queries that collect information in an on-going
manner, and (iv) unsolicited acquisition of
subscribed information units.

Information collection is triggered from the KNOW
block, in response of an information retrieval request
(in case the requested information is not available in
the storage).

Constraints The NEMs sharing information with the KNOW, set
the information collection constraints during their
registration phase or update the constraints during a

FP7-UniverSelf / Grant no. 257513 53

D2.2 — UMF specifications: Release 2

NEM configuration update phase (e.g., to respond to
a network event like congestion). The same process
enables the corresponding NEMs as information
sources.

List of input data

The NEM or set of NEMs producing the information,
id or type of information to be collected.

List of output data

Information

List of non-functional requirements

N/A

Operation 2

Information sharing

Description

An information source may share information to the
KNOW block (or update existing information). The
information sharing is triggered from the information
sources.

Constraints

The NEMs sharing information with the KNOW, set
the information collection constraints during their
registration phase or update the constraints during a
NEM configuration update. The same process enables
the corresponding NEMs as information sources.

List of input data

Id or type of information, the information

List of output data

ACK

List of non-functional requirements

N/A

Operation 3

Information retrieval

Description

Information can be queried from the Knowledge
Building NEMs during their knowledge building
process and both information & knowledge can be
queried from the Actor NEMs that perform
optimization or configuration changes. These
interactions are handled through the Knowledge
Exchange |Interface. The information retrieval
operation may use the same methods with the
information collection operation.

Constraints

Information is available in the KNOW storage or
indexed. The information sinks should register their
information requirements during their NEM
registration or configuration update.

List of input data

Id or type of information requested, further
processing requirements (e.g., the need of
aggregation etc.).

List of output data

Information, aggregated information or knowledge

List of non-functional requirements

N/A

Operation 4

Information dissemination

Description

The ICD function performs information dissemination
to a number of NEMs that build knowledge or that
act upon this information, e.g., performing
configuration changes. The information/knowledge is
disseminated using one of the following methods:

FP7-UniverSelf / Grant no. 257513

54

D2.2 — UMF specifications: Release 2

e Push method: The KNOW responds to a
single information push request coming
from a NEM using the Push method. The
Information & Knowledge Dissemination
block periodically pushes updated
information to the interested NEMs (i.e.,
whenever it changes). The NEMs maintain
the information in a local storage, from
which they service either knowledge
production or act upon the new information;

e Pull method: NEMs may request
information/knowledge using the Pull
method. The NEMs must explicitly request a
particular type of information and/or
knowledge. They can either make these
requests on a periodic basis (polling) or
when a certain demand arises. An example
workflow diagram on the pull method is
illustrated in Figure 23 page 62.

e Pub/sub method: The NEMs can be
subscribed to receive a certain type of
information and/or knowledge. They are
automatically informed when this
information appears or changes (e.g., a
change higher than a particular threshold).
An example workflow diagram on the pub-
sub method is illustrated in Figure 24.

Constraints The information is available and information sinks
have subscribed their equivalent information
requirements during their NEM registration or
configuration update.

List of input data Id or type of information, dissemination method
List of output data Information
List of non-functional data N/A

3.3.2 Information Storage & Indexing function

The Information Storage and Indexing (ISI) function is a logical construct representing a distributed repository
for registering NEMs, indexing (and optionally storing) information/knowledge. An overview of the ISI function
is shown in Figure 20. The ISI function stores information ranging from NEM registration information to
(optionally) knowledge. The ISI functionality includes methods & functions for keeping track of information
sources, including information registration and naming, constraints of information sources, information
directory and indexing. An important storage aspect, which can assist the knowledge production handled by
the Information Processing and Knowledge Production function, is the inherent support of historical
capabilities. For example, a NEM could request information and/or knowledge that was stored in the past using
an appropriate time stamp. It should be noted that knowledge production functionality is not part of the ISI
function, but it supports the storing of knowledge derived due to some earlier calculations. The ISl optionally
stores knowledge produced from the Information Processing and Knowledge Production function (for globally-
scoped knowledge) or Knowledge Building NEMs (for locally-scoped knowledge).

The different NEMs, either requesting or storing information to the KNOW block, do not directly communicate
with the ISI. The ICD function handles information collection or dissemination between the storage points and
the NEMs.

FP7-UniverSelf / Grant no. 257513 55

D2.2 — UMF specifications: Release 2

The Governance block may parameterize the ISI function, based on the current conditions or global
performance goals. For example, the information storage may choose to have alternative structures or
configurations (e.g., number of storage nodes, in case of a distributed storage) that are suitable to a particular
environment or network condition (e.g., the presence of congestion in the network).

Other important requirements of the ISI function are:
e To be aligned to a pub/sub information dissemination capability.

e To support alternative storage structures, such as centralized/ distributed (flat)/ distributed
(hierarchical), based on the context.

e To support information and knowledge caching.

Collcton Quening

NEM NEM
(Sharing [Aeting upon
Infoation Knowiedge
bangle eanpe]

Figure 20. Overview of the Information Storage and Indexing Function.

Requedt Infrmation biariaitn
Infarmaton Collacion | Knoutedge

-—

1

List of “Information Storage and Indexing” operations:

Information storage, Information indexing, NEM registration

Operation 1 Store information

Description The collected/shared information from/through the
ICD function is optionally stored in the Information
Storage. After this stage, the information could be
passed back to the ICD function for dissemination.

Information could be alternatively stored after the
end of an information aggregation or knowledge
production operation.

In case the information is requested through an
information retrieval operation, it is fetched from the
storage and communicated to the requesting NEM
through the ICD.

FP7-UniverSelf / Grant no. 257513 56

D2.2 — UMF specifications: Release 2

Constraints

The type of information to be stored should be
defined beforehand during a NEM registration phase.

List of input data

List<UMFInformation>

List of output data

ACK

List of non-functional requirements

N/A

Operation 2

Index information

Description

Information communicated through the ICD function
is optionally indexed. After this stage, the
information could be retrieved and passed back to
the ICD function for dissemination.

Indexed information could be collected as part of an
information aggregation or knowledge production
operation

Constraints

The type of information to be stored should be
defined beforehand during a NEM registration phase.

List of input data

List<UMFInformationSpecification> (see Figure 7
page 21)

List of output data

NEM Instance ID or UMF CORE BLOCK ID for the
location of the information (for an index request)

List of non-functional requirements

N/A

Operation 3

Register NEM

Description

All NEMs should be registered to the KNOW block.
This process includes their information requirements
and capabilities. The ISl function maintains a NEM
registry, including specifications for the available
information to be collected, retrieved or
disseminated.

Constraints

In case the NEM is already registered, the NEM
information is updated.

List of input data

NEM Instance Description (see section 3.1.6)

List of output data

ACK

List of non-functional requirements

N/A

3.3.3 Information Processing & Knowledge Production function

The Information Processing and Knowledge Production function (IPKP) is responsible for operations related to
information processing (e.g., aggregation) and knowledge production. In Figure 21 we show an example
diagram of the function and its basic interactions with other KNOW functions. We detail below the different
operations of the IPKP function.

A central operation of information processing is the information aggregation (IA). The IA can receive the
collected data from the ICD function and filter them out before they are stored to the ISI function or
disseminated. Again, this reduces the volume of measurements by only sending values that are significantly
different from previous measurements. Using filtering in this way in the KNOW block, lowers the load of the
management network. Furthermore, the IA component itself can be flexible enough to be given different
aggregation specifications by the Governance block in order to process the data in a varying way. For example,
it can be configured to wake up once an hour and select data for the last day, and then apply an aggregation
function. This can be achieved using a mechanism that relies on plugins.

FP7-UniverSelf / Grant no. 257513 57

D2.2 — UMF specifications: Release 2

As well as requesting information, a NEM may subscribe to an event-based notification service (i.e., a pub/sub
mechanism) by setting an appropriate threshold to a specific type of information. Whenever this threshold is
exceeded, the subscribed NEM is notified. Aggregation is done during the information collection phase, in
order to minimize overhead.

Accordingly, Knowledge Production (KP) component handles and produces globally-scoped knowledge. This
type of knowledge is being produced out of aggregated information or locally-scoped knowledge. Locally-
scoped knowledge, on the other hand, is built from the Knowledge Building NEMs out of data/information
directly collected from the managed entities. In both cases, reasoning and inference mechanisms are required.
Thus, similar software components can be used.

These software components can be based on a number of different techniques depending on the exact
problem that is addressed, the type of inputs that are used and the type of output that needs to be acquired.
Such techniques may come from scientific areas like statistics, clustering, reasoning, Fuzzy or machine learning
(including supervised, unsupervised and reinforcement learning techniques).

The produced knowledge from the IPKP block can be optionally stored in the ISI function so as to be available
for UMF core mechanisms or NEMs when requested/needed.

Governance Coordination

Knowledge production [Performance

| Performance / Conflict avoidance,

Information flow

ri s 2 Aggregated conflict 2as |
optimization rules algo.. ithms Sccuracy joint optimization, m%im;gm‘oq | measurements for
J configurations & 1. measuréments orchestration status | o) joint optimization
v requirements v v ! and orchestration |
Rranraben Information Processing & ;
Knowledge Production

‘ Aggregation Knowledge Production

Aggregation

- Locally-scoped A
- & wied: Globally-scoped
S Information Flow Establishment & k""r“ el k"o,h,e:,ge o
Collecting locations o Optimization aggregate |
aggregated ™ 3Bgregation points | Information h
Information ™\ & filtering rules — p——
k A 'y £
\ | Aggregation | Topological ;’;’;‘:;’::Fon Information
requirements Information s A
parameters 4 Storagg &
Indexing
2 - . — ,.v"'mdexmg/s:onng -
') i reweving
Information Collection & Dissemination Information &

knowledge

KNOW Functions

Figure 21. Overview of the Information Processing and Knowledge Production Function.

List of “Information Processing and Knowledge Production” operations:

Information aggregation, Knowledge production

Operation 1 Aggregate Information

Description applies aggregation functions to the collected data /
information. The aggregation process increases the
level of information abstraction, thereby
transforming the data into a structured form, but at
the same time reducing the load on the network.

Aggregation works in situations where NEMs do not
need a continuous stream of data from the KNOW,
but can get by with an approximation of the data
values. For example, getting an occasional

FP7-UniverSelf / Grant no. 257513 58

D2.2 — UMF specifications: Release 2

measurement with the average of the volume of
traffic on a network link may be enough for some
NEMs.

Some common aggregation functions include SUM,
AVERAGE, STDDEV, MIN and MAX. Although it is
most common to use aggregation functions such as
the above, arbitrary functions can be passed in,
which give considerable power and flexibility when
determining aggregations. For example: a customized
function that is more complicated compared to the
basic aggregation functions.

Constraints The information to be aggregated should be in the
storage or can be collected at real-time. The latter
triggers an information collection operation.

List of input data Id or type of information, information

List of output data UMPFInformation

List of non-functional requirements N/A

Operation 2 Produce/Build Knowledge

Description Produces globally-scoped knowledge out of

aggregated information or locally-scoped knowledge.
Reasoning and inference mechanisms are required
for this process.

Constraints The required aggregated information or locally-
scoped knowledge should be available in the storage
or can be produced at real-time. The latter triggers
an information collection operation.

List of input data Aggregated information or locally-scoped knowledge
List of output data Globally-scoped knowledge
List of non-functional requirements N/A

3.3.4 Information Flow Establishment and Optimisation function

The Information Flow Establishment & Optimization (IFEO) function (see Figure 22) regulates the information
flow based on the current state and the locations of the participating components (e.g., the NEMs producing
information). In particular, it controls information collection handled from the ICD function, information
aggregation in the IA operation, and aggregation node placement. Furthermore, it guides a filtering system for
information collection and aggregation points that can significantly reduce the communication overhead.
However, the reduction depends on the nature of the metric to be monitored.

Both Information dissemination and collection processes should meet certain information
collection/dissemination constraints, being communicated to the KNOW during the NEM registration
processes. For example, a number of NEMs may trade information accuracy for communication cost. Such
accuracy objectives should also meet performance requirements coming from the Governance block
(harmonizing information flow to the global performance goals). The Information Flow Establishment &
Optimization function is responsible for such quality enforcing functionalities. In the IFEO function, a
negotiation takes place that matches interests with constraints. The outcome of the negotiation is the
parameters of the information flow, harmonized with the capabilities of the information sources, the
requirements of the information/knowledge sinks and the global performance goals of the Governance block.

The IFEO function controls the KNOW and enforces decisions by communicating with the appropriate KNOW
nodes (i.e., in case of a distributed deployment), handled from the corresponding KNOW functions, in order to
satisfy the performance optimization requirements (coming from the GOV):

e guides the optimal placement of the KNOW nodes

FP7-UniverSelf / Grant no. 257513 59

D2.2 — UMF specifications: Release 2

e regulates the information filtering of information collection and dissemination (i.e., handled from the

ICD function), based on accuracy objectives

The above processes are part of the quality enforcement functionality of the KNOW block and all
corresponding decisions are being taken from the Information Quality Controller (IQC) Component of the IFEO

function.

Governance

A
Performance
measurements

Optimisation algorithms|
configurations

Information flow
optimisation rules

= <8 o

Conflict avoidance, |
joint optimisation,
orchestration status |

-y ==
Information

Coordination

Performance
measurements for |
joint optimisation
N and orchestration

A
Aggregated conflict ’
{ information |

s >
Information Flow

= = Locations of o ,7
Optimisation : :
Information aggregation :Igorithms Quality Configuration &
Aggregation points Controller Statistics
| €
- - Filtering
rules . s
e Information Flow Establishment &
Optimisation
(nlle(nng\\\ A N 'y -
aggregated | Aggregation Topological (Information
information requirements Information retrieval
parameters

Information Collection & Dissemination

" Information
Storage &
S Indexing)

A
] Indexing/Storing - retrieving
o Information & knowledge

=3

KNOW Functions

Figure 22. Overview of the Information Flow Establishment and Optimization Function.

Finally in order to support the indexing and retrieving of information from the indexing table, it is worth
mentioning that future work on the UMF should identify/define an ontology to express the relation between
network entities and to ensure consistency between the indexed UMFInformationSpecifications (see Figure 7),
related also to the section 3.3.2 on Information Storage & Indexing functionon).

List of “Information Flow Establishment and Optimization” operations:

Information flow establishment, Information flow optimization, Information quality control

Operation 1

Negotiate Information flow

Description

Responsible for the establishment of every flow of
information. This process takes place proactively
during a NEM registration or configuration update
phase. The flow is optimized from the information
flow optimization operation.

Constraints

The information flow constraints come from the
NEMs during their NEM registration phase. The
constraints should be aligned with the high-level
objectives coming from the GOV block.

List of input data

UMFInformationSpecification (see section 3.1.2) and
FlowParameters (like Knowledge
Excg=hangelnterface URL...)

FP7-UniverSelf / Grant no. 257513

60

D2.2 — UMF specifications: Release 2

List of output data

InformationExchangePolicies

List of non-functional requirements

N/A

Operation 2

Optimize Information flow

Description

Optimizes each information flow, attempting to meet
the expressed constraints and requirements.

Constraints

The information flow optimization operation applies
the optimization decisions coming from the
information quality controller operation.

List of input data

UMFInformationSpecification, and FlowParameters

List of output data

InformationExchangePolicies

List of non-functional requirements

N/A

Operation 3 Information quality controller

Description Responsible for information flow optimization
decisions.

Constraints The information flow constraints come from the
NEMs during their NEM registration (or configuration
update) phases. The constraints should be aligned
with the high-level objectives coming from the GOV
block.

List of input data UMFInformationSpecification,, information flow
constraints, information flow requirements

List of output data Optimization rules (e.g., filtering based on a certain
accuracy objective, optimal number and placement
of distributed KNOW nodes etc).

List of non-functional requirements N/A

Figure 23 illustrates the knowledge exchange process using the pull method. The pub-sub method is illustrated
in Figure 24 (publish part). The information subscription diagram illustrated in Figure 25 is part of the NEM
registration (or configuration update) operation or it can be part of the configuration of a coordination
mechanism.

It is important to note that, the workflows presented there have actors that are named knowledge sink and
knowledge source. This means these workflows are characterizing the behaviour (Figure 23 and Figure 24) and
the configuration (Figure 25) of a Knowledge Exchange Interface. (see Figure 7 , which depicts the Information
model of the UMF information).

This Knowledge Exchange Interface is available at least once in each UMF entity (any of the UMF Core Block
and any NEM). The interface is used to exchange knowledge between UMF entities directly or through KNOW
which can act as an intermediate repository (see section 3.3.2 Information Storage & Indexing function). In fine
the role of the Information Flow Establishment & Optimization function is to organize such flows between UMF
entities and to keep track of the existence of these flows.

FP7-UniverSelf / Grant no. 257513 61

D2.2 — UMF specifications: Release 2

Information § Knowledge Sink.

Information { Knowledge Source

Generate Request Info Message

Check Authorization

I
I

Wait message reception

Check Information Availability

Generate Rejection Message

Retrieve Information
Check if retriaval was successfully completeD

OK

e

Send Message

Query Timed out

i : 3 Ok (Check Message Content

)

MNOK <g

ejection

Information Obtained
Informatign not Obtained

®

oK

Check if Storage is Required

OK

Store Information

rcenerate Information Exchange Messag?{_‘

Figure 23. Knowledge Exchange workflow diagram using the Pull method.

FP7-UniverSelf / Grant no. 257513

62

D2.2 — UMF specifications: Release 2

Information { Knowledge Sink

Information { Knowledge Source

‘Wait message reception

< Query Timed out >

oK
Check Message Content:

Rejection

ion Obtained

Check if Storage is Required

Informatign not Obtained

Stare Information

Send Message

Generate Information Exchange Message

Create Subscription Termination Message

Match Informati

Mo Subscriptjon Matched
Subscription Matched

Check if retriaval was successfully completed

oK

Check if Storage is Required

Value higher than threshald

Value lower than threshol

Figure 24. Knowledge Exchange workflow diagram using the Pub-sub method.

FP7-UniverSelf / Grant no. 257513

63

D2.2 — UMF specifications: Release 2

Information § Knowledge Sink KNOW Information / Knowledge Source
(Express Info Subscription Request) C Check Information is Indexed)

ey

MNOK

Generate Failed Message

@<

Information Subscription Failed

OK

I Communicate Flow Parameters < Negotiate Information Flow _\\ { Communicate Flow Parameters
I Communicate Flow Parameters (Optimize Information Flow) \JI Communicate Flow Parameters
| Configure Knowledge Exchange Interface < Generate InformationExchangePolicies | Configure Knowledge Exchange Interface

[% (Index Information Flow)

Information Subscription Granted

Figure 25. Information subscription workflow diagram (i.e., the Resolve Knowledge Dependencies process of the NEM
registration diagram).

3.4 Coordination block

The role of the coordination block is to protect the network from instabilities and side effects due to the
presence of many NEMs running in parallel. It ensures the proper triggering sequence of NEMs and their stable
operation. To this end, the coordination block must define conditions/constraints under which NEMs will be
invoked (i.e. produce their output), taking into account operator service and network requirements e.g. the
needs to optimize the use of the available network resources and avoid conflicts between NEMs that can lead
to sub-par performance and even unstable and oscillatory behaviours.

Alike any other UMF Core Block, COORD is also implementing at least a KnowledgeExchangelnterface in order
to receive and provide flows of information under the control of the Information Flow Establishment and
Optimisation function of KNOW (see section 3.3.4).

List of Coordination block functions
e Orchestration

e Optimization and Conflict Avoidance

3.4.1 Orchestration function

This function is responsible to address orchestration issues of NEMs. It relies on policies/scenario from the
operator, corresponding input/output and timing relationships, to address issues such as ordering the
execution sequence of NEMs and maintains the proper workflow in a way that is needed to resolve inter-NEM
dependencies. An example of such operator policy would be “core segment optimization should follow access
segment optimization”; in general policies dictated by the “service view” of the operator which can bind certain
NEMs together, in order to ensure and maintain consistency in the service delivery.

FP7-UniverSelf / Grant no. 257513 64

D2.2 — UMF specifications: Release 2

Orchestration poses “lower-level” constraints that the running NEMs have to follow in order to avoid conflicts
that could lead to under-performance.

List of “Orchestration function” operations
Update NEM instance description, Delete NEM instance description, Identify delta in COORD NEM registry

Name Update NEM instance description

Description Instance description of the registering NEM is stored
in the COORD NEM registry. This operation must
check if an older version of NEM instance description
is already stored (and if yes, then it must update it).

Constraints

List of input data NEM Instance description (see section 3.1.6

List of output data None

List of non-functional requirements

Name Delete NEM instance description

Description Instance description of a NEM is deleted from the
COORD NEM registry

Constraints

List of input data NEM Instance id

List of output data None

List of non-functional requirements

Name Identify delta in COORD NEM registry

Description This operation triggers the “ldentify NEM
Coordination needs” operation whenever a change in
the COORD NEM registry is observed; either by the
insertion of a new instance description (registering
NEM) or by a change in the instance descriptions of
the already registered NEMs

Constraints

List of input data NEM instance description of the registering NEM.

Instance description of already registered NEMs
(NEM registry)

List of output data Trigger event for “Identify NEM Coordination needs”

List of non-functional requirements

3.4.2 Optimization and Conflict avoidance function

This function is responsible for guiding the re-computation of the resource allocation to the NEMs in a way that
optimizes the global system’s utility, capturing even the end-to-end optimization of different segments and for
the detection and avoidance of conflicts between NEMs. Part of the role of this function is to group conflicts
and assign feasible mechanisms to handle them taking into account:

e the available optimization and conflict avoidance mechanisms
o the dependencies between NEMs, as instructed by the Orchestration constraints
List of “Conflict avoidance function” operations

Identify NEM coordination needs, Choose coordination mechanism, Coordination mechanism feasibility check,
Merge conflicts, Define coordination mechanisms parameters/NEMs control policy, Check coordination

FP7-UniverSelf / Grant no. 257513 65

D2.2 — UMF specifications: Release 2

mechanisms/NEMs control policy, Send NEMs Control Policy, Retrieve context/monitoring info, Retrieve NEM

info, Call for Governance

Name

Identify NEM coordination needs

Description

This operation consists in checking coordination
needs between new conflicting elements and the
managed ones.

Based on this first assessment, this operation may
update the list of conflicts between NEMs at an
atomic level (e.g. From a NEM output to other NEMs
using it).

Constraints

List of input data

NEM instance description of the registering NEM.

Instance descriptions of already registered NEMs
(NEM registry)

List of existing atomic conflicts

List of output data

Updated list of atomic conflicts

List of non-functional requirements

Name

Choose coordination mechanism

Description

This operation consists in choosing coordination
mechanism for each atomic conflict; the choice will
be based on the available coordination mechanisms.

Constraints

List of input data

List of atomic conflicts, NEMs instance descriptions
including:

-NEM ids to be handled by COORD, Parameters used
(and where)

-metrics affected (and where),

-timings of the NEM (including both convergence
time and expected interval between two triggers of
the NEM)

-Utilities
Policies
ORCH constraints

Outcome of previous “coordination mechanism
feasibility checks”

Outcome of previous “Check coordination
mechanisms/NEMs control policy” operations

List of output data

List of existing atomic conflicts associated with a
coordination mechanism

List of non-functional requirements

Name

Coordination mechanism feasibility check

Description

This operation consists in making a feasibility check
for a coordination mechanism associated with an
atomic conflict.

This check is to verify and identify how far a

FP7-UniverSelf / Grant no. 257513

66

D2.2 — UMF specifications: Release 2

coordination mechanism can manage an atomic
conflict taking into account the NEM capabilities

Constraints

List of input data

NEM instance descriptions, list of atomic conflicts
ORCH constraints

List of output data

Feasibility grade, for the checked (atomic conflict,
coordination mechanism) pair. If grade not
satisfactory, to trigger Choose coordination
mechanism OR Call for governance (the latter if no
coordination mechanism is feasible for handling an
atomic conflict).

List of non-functional requirements

Name

Merge conflicts

Description

This operation consists in regrouping atomic conflict
based on the coordination mechanisms

Constraints

List of input data

List of atomic conflicts with associated coordination
mechanisms

ORCH constraints

List of output data

List of group of atomic conflicts with associated
coordination mechanism

List of non-functional requirements

Name Define coordination mechanisms parameters/NEMs
control policy
Description Set parameters for the selected coordination

mechanisms and produce the NEMs control policy for
the NEMs that will need to be controlled by the
selected coordination mechanism for each group of
atomic conflicts

Constraints

List of input data

Group of atomic conflicts with associated
coordination mechanism

NEM instance descriptions
ORCH constraints

List of output data

NEMs control policy, Coordination mechanisms
parameters

List of non-functional requirements

Name Check coordination mechanisms/NEMs control
policy
Description Check whether the coordination mechanisms when

considered all together can operate as intended and
whether the NEMs can enforce the instructions of
the NEM control policy or there are some underlying
restrictions that can prevent this in practice.

Constraints

FP7-UniverSelf / Grant no. 257513

67

D2.2 — UMF specifications: Release 2

List of input data

NEMs control policies, coordination mechanisms
parameters

List of output data

Ok/not ok; for the “not ok” case the error message
should indicate which NEM control policy action(s)
cannot be enforced and why, and/or which
coordination mechanisms failed and why.

If not ok, to also trigger Choose coordination
mechanism OR Call for Governance (the latter when
all possible coordination mechanisms have been
checked for all possible groupings of atomic
conflicts).

This operation involves sending the candidate control

to NEMs and receiving the outcome of its testing by
NEM:s.

List of non-functional requirements

Name

Retrieve context/monitoring info

Description

Retrieve context and monitoring information from
KNOW for use by the coordination mechanisms

Constraints

List of input data

List of output data

List of non-functional requirements

Name

Retrieve NEM info

Description

Retrieve NEM info from KNOW; information that may
not be directly available from the COORD NEM
registry but may be provided by KNOW (e.g. NEM
convergence time, assuming KNOW logs and updates
this for the NEMs of interest)

Constraints

List of input data

List of output data

List of non-functional requirements

Name

Send NEMs control policy

Description

Sends the NEM control policy to NEMs ; this includes
disabling a NEM or configuring a NEM

Constraints

List of input data

Outcome of “Check coordination mechanisms/NEMs
control policy”

List of output data

Either ActionConstrainingPolicies or RegimePolicies
(see Figure 6 page 20)

List of non-functional requirements

Name

Call for Governance

Description

Alerts GOV when all the feasibility checks for a

FP7-UniverSelf / Grant no. 257513

68

D2.2 — UMF specifications: Release 2

coordination mechanism to be associated with an
atomic conflict have failed or when all coordination
mechanisms have been checked and failed.

Can also relay to GOV, Call for Governance messages
received from NEMs.

Constraints

List of input data

List of output data Call for GOV message (NEM ids, current output of
“Check coordination mechanisms parameters/NEMs
control policy”, current output of “Coordination
mechanism feasibility check”)

List of non-functional requirements TBD later

GOV COORD NEM KNOW

T

(Identify Delta in COORD NEM registry }

Identify NEM coordination needs

(Address NEM information retrieval renuesl)

‘Coordination mechanism feasibility check

!
not all coordination mechanisms ch:cl]k

/' all coordination mechanisms checked

Call for Governance

\ (Deﬁr\e coordination mechanisms parameters NEMs cantrol Doth

ot al coordination mechanisms checked G"ed‘ R e e DO"CD @

(" Call for Governance
@ D,

all i chedked not ok

Figure 26. Manage conflicts activity diagram.

The workflow is triggered whenever a change in the COORD NEM registry is identified, whether by the insertion
of a new NEM instance description or the updating of an existing one. This means that there may be a need to
change the association of NEMs with the available coordination mechanisms or to update some parameters of
the currently used mechanisms. Towards this end, first there is a re-assessment of the coordination needs
between new conflicting elements and existing managed ones that leads to an updated list of atomic conflicts;
then based on the availability of coordination mechanisms one of those is selected for each conflict. This may

FP7-UniverSelf / Grant no. 257513 69

D2.2 — UMF specifications: Release 2

involve interactions with KNOW in order to retrieve possible NEM information that may be available in KNOW
and help in the selection of the appropriate coordination mechanism.

This is followed by a check whether, taking into account the NEM capabilities, the selected mechanism can
indeed be applied for managing the specific conflict. If the selected mechanism fails the check, then other
coordination mechanisms are considered until a suitable one is found. If no suitable mechanism is found then
GOV is notified of this situation. Assuming though that all atomic conflicts can be successfully associated with
one of the available coordination mechanisms, then atomic conflicts are grouped and associated with a specific
coordination mechanism (same instance of a coordination mechanism associated with multiple atomic
conflicts) and the coordination mechanisms parameters and NEMs control policy are defined (hereafter NEM
control policy can be either ActionConstrainingPolicy or RegimePolicy ore subscription request towards KNOW
that will be concluded by KnowledgeExchangePolicy — see section 3.1.2 Figure 1. UMF overview and
decomposition.).

This is followed by a check whether the coordination mechanisms when considered all together can operate as
intended and whether the NEMs can enforce the instructions of the NEM control policy or there are some
underlying restrictions that can prevent this in practice. If the checks are successful then the parameters are
enforced in the coordination mechanisms and the corresponding NEMs control policies are sent to the NEMs. If
however the check fails, then attempts are made to rearrange the association of atomic conflicts with
coordination mechanisms and carry out again the grouping of them under specific instances of the
coordination mechanisms. Eventually, if this process does not lead to a feasible solution then GOV is notified.

GOY/COORD{KNOW MEM COORD

Send Polic:
4 Receive policy

Check Policy consistence

Store and Apply Policy

Generate Error Message

P

Send Message Generate Completion Message

(Is MEM Instance Description modified ?)

Wait message reception

Success

Update the dynamic part of instance descriptions inside NEM registery
Motify COORD of changed state >_—_

Figure 27. Set Policy activity diagram.

FP7-UniverSelf / Grant no. 257513 70

3.5 Interfaces

D2.2 — UMF specifications: Release 2

Interface Name

GOV -NEM interface

Description

Interfaces offered between NEMs and Governance.
Governance uses it to retrieve information about the
NEMs, to configure it through the mandate or
policies, and to configure how the NEM is going to
report information.

List of operations (exposed operations)

Send NEM Mandate
Set Up a NEM

Set Down a NEM
Delete NEM

Get NEM State

Get NEM Mandate
Revoke NEM Mandate
Get Manifest

Interface Name

GOV -COORD interface

Description

The high level objectives of human operator are also
transformed to a set of low-level policies for the
cooperation of the NEMs (e.g. permissible
cooperation of NEMs, in order to achieve a goal).
Before this, coordination should inform Governance
of the policies that can be customized and send to
Coordination.

Furthermore, Governance should inform the
Coordination core component for the registered
NEMs. So, the decision for NEMs’ coordination
would be taken in the framework that is defined
from the policies of Governance and the requested
information from Knowledge, corresponding to
probabilities of specific operation/behaviour of
registered NEMs in particular network conditions.

Finally, the possibility of COORD calling to
governance when the available coordination
mechanisms cannot successfully achieve their goals
is also included here.

List of operations (exposed operations)

Inform Coord Policies
Set Coord Policies

Call For Governance

Interface Name

Human operator - GOV interface

Description

Interface that allows the interaction of the human
network operation and the UMF. This interface
allows: the definition of Services;

The high level objectives of human operator are also
transformed to a set of low-level policies for the
cooperation of the NEMs (e.g. permissible
cooperation of NEMs, in order to achieve a goal);

FP7-UniverSelf / Grant no. 257513

71

D2.2 — UMF specifications: Release 2

and the visualization of the network status

List of operations (exposed operations)

Define Service

Define High Level Objectives
Define Coordination Policies
Visualize Network Status

Send Notification

Interface Name

Knowledge Exchange Interface

Description

This interface is part of KNOW block and is
responsible for exposing KNOW operations which are
related to information exchange to the other UMF
core blocks, i.e. GOV and COORD blocks, and to the
NEMs. For example, from the COORD point of view
this interface can be used as follows:

a) for retrieving the aggregated information on
conflicts between NEMs which is generated by
information aggregation and not explicitly by the
NEMs.

b) for knowledge provision based on which, joint
optimisation and orchestration of the NEMs can be
performed

c) for COORD to provide the status of its operations
to KNOW

List of operations (exposed operations)

Information Collection
Information Sharing
Information Retrieval

Information Dissemination

Interface Name

Knowledge Management Interface

Description

This interface is part of KNOW block and exposes to
the other UMF core blocks and the NEMs those
KNOW operations that are related to management
issues of KNOW. For example, policies, aggregation
mechanisms to be used, optimisation goals for the
KNOW, and the configuration of the KNOW
properties (e.g., to change the information flow
optimisation policies, to add new general accuracy
objectives for the information filtering etc) can be
passed to KNOW via this interface.

List of operations (exposed operations)

NEM registration

Information quality controller

Interface Name

COORD -NEM interface

Description

Interfaces offered between NEMs and Coordination.
Coordination uses it to request information from
NEMs that is needed by the coordination mechanism
and test/enforce changes in the NEM behavior. NEMs

FP7-UniverSelf / Grant no. 257513

72

D2.2 — UMF specifications: Release 2

use these interfaces to respond to this
testing/enforcement of changes in their behavior and
also request a control policy when needed.

List of operations (exposed operations)

Send NEMs control policy

Request/ Respond NEM control policy
Call for Governance

Send candidate control

Reply candidate control

Unregister NEM

Interface Name

COORD -KNOW interface

Description

Interfaces offered between Knowledge and
Coordination. Coordination uses it to request
information from Knowledge that is needed by the
coordination mechanisms. This information can be
both network/context related but also NEM related

List of operations (exposed operations)

Request NEM information
Send NEM information
Request context/network information

Send context/network information

FP7-UniverSelf / Grant no. 257513

73

D2.2 — UMF specifications: Release 2

4 UMF core mechanisms

4.1 Governance mechanisms/tools

4.1.1 Translation mechanisms

The translation of business goals to low level policies (well known as “policy refinement” as well), which
encompass semantics and reasoning techniques, accomplish the successful conversion of higher level policies
to lower level policies, enabling policy continuum and business goals realization.

The stages of policy translation realization are:

a. Specification of the kind of information that is conveyed by the corresponding policies. The respective
information flow of “Business level” policies is related to business-level goals and service requests,
the information flow of “Service level” policies is related to service characteristics as these reflect to
specific network parameters, and the respective info flow of “NEM” policies is related to demanded
operation/behaviour/usage of NEMs/elements/resources in specific network segments.

b. Definition of relevant information classes with corresponding semantics for each level.
Determination of the relation between classes of adjacent levels.

d. Design of the alternative form of policies per level with the assistance of proper operators, based on
the corresponding operations/processes and NEMs coordination, and the correlation with the defined
classes.

In essence, the policy manager of each level receives the policy, recodes it and proceeds to its deconstruction
to a set of instances of info classes. In case, that there are not any relevant classes, policy managers are
“learning” to create new classes and associate them with classes of the upper and lower level.

The design of the policies structure may be effectuated in the framework of the existent policy model that is
related to the selected information model (SID).

For example in UC6 demo, the administrator writes to the console of the H2N tool: “l want to serve new traffic
consisting of 300 mobile concurrent users of Video Conference Application with SLA corresponding to high
QoS, on top of my multi-vendor and multi-technology infrastructure in a reliable manner, for the centre of
Piraeus, between 4.00pm and 4.30pm”. This phrase is transformed to a Business level policy entitled
“BusinessLevelEntryNotification”. Specifically, the info elements are identified and the respective values are
registered to the corresponding info classes. So, the instances of the classes: OperatingScheme,
NumberOfUsers, GovLocationInfo, GovTimezonelnfo, GovApplicationIinfo, are produced. Some of the classes
may consist of an array of other classes, as for example the GovApplicationInfo. In this case, the instances of
the classes are shown in Table 8.

Table 8. Instances of classes of “BusinessLevelEntryNotification” policy

Business level policy classes Instances

OperatingScheme reliable accommodation of traffic of all users

NumberOfUsers 300

Govlocationinfo centre of Piraeus

GovTimezonelnfo between 4.00pm and 4.30pm

GovApplicationinfo GovApplicationInfo Video Conference Application
GovQualityLevel High QoS

These classes are combined (based on the affiliated semantics, the structure of policies in the framework of the
selected policy model and the syntax rules of the selected policy language), and construct the business policy
“BusinessLevelEntryNotification”.

This business level policy is sent to the suitable entity (entity that realizes the relevant SAD_FB functionality in
this case), which analyses the received policy and generates the instances of the classes that are associated
with the contained info elements. Specifically, she generates the instances of the classes NumberOfUsers,

FP7-UniverSelf / Grant no. 257513 74

D2.2 — UMF specifications: Release 2

GovlocationInfo, GovTimezonelnfo, and targets at generating instances of the classes that are associated with
GovApplicationinfo [Application, GovQualityLevel]. In order to achieve this, she obtains updates of the rules for
association of services to users classes and quality levels from the respective Repository, corresponding to
specific Quality of Service parameters. These rules constitute another business level policy entitled
“AssociationNotification” policy. The contained info of the policy is assigned to classes:
UserClassesOfApplication, QualityLevelParametersOfApplicationOfUserClasses. Finally, based on this policy set,
the policy manager of the service level generates instances of the classes: NumberOfUsers, GovLocationInfo,
GovTimezonelnfo, Application, QualityLevelParametersOfApplication.

These classes are combined to make up the corresponding service level policy that is sent to the proper entities
(which manage the potential targeted NEMs). After the suitable operations of the responsible entities, which
are triggered by this service level policy, the base stations in the determined area are identified, and based on
the estimated load (probability) for each of them, the base stations (RAN elements) that will be used are
selected and the relevant calculated values are assigned to the corresponding classes. Then, the policy
manager of the entity that effectuates the CSC_FB functionality, combines the relevant instances of classes
Application, NumberOfUsers, RANelementParameters, with the proper operators, formulates the resource
policy “NetworkOfferRequest” for each selected RAN element (NEM policy), and sends it to them.

The presented approach enables the selection of different implementation policy languages, according to the
needs and the particular goals of the operator. A high level representation of the policy continuum in this
instantiation of UC6 is depicted in the Figure 28.

“l want to serve new traffic consisting of 300 concurrent mobile users of
Video Conference Application with SLA corresponding to high and normal
QosS, on top of my multi -vendor and multi-technology infrastructure in
reliable manner, for the centre of Piraeus, between 4.00pm and 4.30pm”
- __——BusinessLevel
EntryNotification Policy

GovQuality
Level

GovTimezone
nfo

Govlocation
Info

Application

Operating NumberOf
Scheme Users

Business level Policies

Associatign
Notification Policy

UserClassesOf
Application

QualityLevelParameters
OfApplicationOfUserClass

AdditipnalLoad
Notification Policy

Govlocation GovTimezone QualityLevelParameters

q fA m NumberOf I
Service level Policies ’ Users Info nfo ’ Application ’ OfApplication
ation Of
Parameters
NetworkOfferRequest
Policy
NEM Policies m ’ Nulz‘::i:Of ’ Application ’ RANelementParameters

Figure 28. High level representation of the policy continuum for the instantiation of UC6.

It is noted that the policies of this instantiation of UC6 have a “Request” form, which has not the classic form of
Event-Condition-Action policy of Policy SID model. For example, for the representation of the
“BusinessLevelEntryNotification”policy in the context of Policy SID model, although it can be considered that
the PolicyActions are of the form “SET <action-target> to <value>”, there is not PolicyCondition of the form: “IF
<policy-condition> is TRUE”, and the definition of PolicyConditionSpec complicates attempts unnecessarily to
adapt the high-level governance policies and associations to SID framework. This fact emphasises the need for
extension of the SID policy model, in order to cover all the possible forms and cases that will accrue from
different requirements in the future networks and systems. Furthermore, in the framework of extension of SID
policy model, it would be helpful to study extensions of a set of defined attributes, for example in the context
of PolicyRuleBase and PolicyRuleSpecifications (e.g. the alternatives choices for executionStrategy).

FP7-UniverSelf / Grant no. 257513 75

D2.2 — UMF specifications: Release 2

Based on the above approach for policy translation, future work may comprise:

e Mapping of parameters of tentative messages of Use Cases in D2.1 (with probably necessary updated
information) based on the selected IM (SID) (Cooperation of WI2 and WI6).

e Delegation of info classes per policy level and definition of proper semantics
e Definition of the policy model- possibly extension of SID policy model
e Selection of policy language per level.

For the realisation of the translation (refinement) of the high level policies (resides in highest level of policy
continuum) to low level policies (resides in the lowest level of policy continuum), a variety of policy refinement
methods have been proposed so far with certain pros and cons, the most typical of which are:

e Goal-oriented policy refinement

e C(lassification-based policy refinement
e Ontology-based policy refinement

e Prescription-based policy refinement
e Case-based policy refinement

In general, a key challenge in developing a policy translation approach is to achieve an acceptable trade-off
between the generality of the approach and the level of automation possible. Fully-automated approaches are
also highly specialised to particular applications domains and cannot be applied to other domains. On the other
hand, generalised approaches to refinement require experts who are familiar with both the application domain
and low-level formal representations to provide information regarding the managed system.

After studying in detail the aforementioned approaches, the most efficient and wide accepted seems to be the
ontology-based policy refinement methods. The use of ontologies to represent each level of the policy
continuum, and the definition of mechanisms for translation using semantic techniques, made this approach
valid with independence of the number of policy continuum levels selected to be implemented (e.g. 5 or 3
levels). In this direction, we can assume that each vendor will have its own ontology for the lowest level, while
an ontology for the business layer will be defined, assuming the n intermediate levels have also their own
ontology. The translation methodology will describe how the translation can be done (mapping between
ontologies); probably imposing requirements on the policy model (see [2][1]). Then, at implementation time,
one has to select the most appropriate number of levels for his particular problem.

Among the various ontology-based policy refinement methods the most prominent candidate is the use of
OWL/SWRL for the representation, translation and reasoning of policies, for the following reasons:

e |tis a general approach which can be applied to a variety of application and technological domains in
contrast to other methods which require high human intervention (e.g. prescription-based policy
refinement, case-based policy refinement)

e It is a highly automatic approach. The generation of ontologies and SWRL rules ensures the
automaticity of the translation process.

e Support interoperability between high level policies and low level policies, enabling bidirectional
information mapping at runtime. This approach is the only one (to the best of our knowledge) that
supports bidirectional refinement of policies.

e Itis not as complicated as other methods (e.g. goal-oriented policy refinement)

e Provide interoperability with other information models (apart from SID), policy models, and behaviour
definitions since they are represented in OWL and SWRL.

e Can beinterpreted and executed by general purpose semantic engines.
e Can be implement with reasonable resources.

Another approach of realising the policy refinement procedure and network governance framework in general,
considers KPIs as of crucial importance. More specifically, the performance of the operations of a
telecommunication system as well as the performance of the services provided can be described by a set of
KPIs. The current values of KPls designate the current efficiency of the network in accomplishing the
operational targets, while also indicating the overall performance of the services in fulfilling a certain level of
quality defined in users’ SLAs (Service Level Agreements). In this direction, the proposed methodology defines
the KPIs as the cornerstone of policy translation process. In practice, all the available KPIs do not equally affect

FP7-UniverSelf / Grant no. 257513 76

D2.2 — UMF specifications: Release 2

any possible business goal. On the contrary, specific types of goals are affected by sets of specific KPIs.
Therefore, in order to constrain the policy translation process to only meaningful translations, we classify the
available business goals into categories based on areas of interest and assign to each category a set of KPIs (e.g.
category “QoE” includes the following KPIs: Delay, Jitter, Packet Loss).

GoalCategoryi = {KPI1, KPI12, KPIn}

The selected KPIs prove to affect (based on standards) the goals of the specific category in terms of network
and service performance. In addition, the aforementioned KPIs can be either operational or service based KPls
(e.g. KPIs described in SLAs) reflecting the ability of the translation framework to co-manage network and
services.

In the meantime, the majority of policy translation studies concentrate on refining an initial goal into a set of
low level policies that are generated dynamically from scratch. This approach, although general enough, lacks
practical feasibility as it requires the operator to provide a vast quantity of information that is very difficult or
even impossible to collect. In addition, the derived policies should be verified by the operator prior to their
enforcement as they may be unexpected and may drive the network to instability.

The proposed methodology is based on the reusability of policy templates for the generation of policies in all
the layers of policy continuum. An indicative example of a policy template is depicted in Figure 29. According to
this approach for each Goal Category or KPI set, a series of policy templates (based on OWL) are already stored
in a pool of policy templates. In practice, these templates form the policy skeleton on which the real policies
will be built during the translation phase. In the pool, some policies are linked reflecting the translation step,
while others are subclasses of more general policy templates. These templates are generated by network
experts and after their creation they can be reused or extended to meet the needs of the specific operator.

¢ WariableStandard B

_iza—
(_PolicyWariable J=}—&a——— “ariableCustom

Ve PolicyActionAtamic
},’ _ima—— - -
is s e T
3 (_ Policyfction =} ——isa— PalicyActionCompaosite
e — x}—.._,_i_z_r_a_ —
A is g — —
y /,f’ licyOperator _PolieyActionVendaor
[y iz a—
[Thing W=}—s3—— Paolicy —ss—— PalicyStatement PolieyGroup)
[N isa—
M s B T
N - [PolicySet }=}——%3—— PolicyRuleBase
_js—a -) T S
. PolicyCondition J=}—i53 < PalicyConditionCempasite
“, — = — o -
. —isa
-, — —
. — — .
S _PolicyConditionAtamic

",
.,
™,

Palieyvalue <=+ WalueStandard)
— __..-—\,:______is::‘__ R ——

-Z_Valuecustom b

Figure 29. Policy template in OWL.

A vital input to the translation process is the network hierarchy and topology. This information is necessary to
map the abstract entities (described in OWL) to real network devices, objects and operations and subsequently,
to enforce the derived low level policies to selected network components. Additionally, in the proposed
approach this information is used for the translation of policies between two subsequent levels of policy
continuum. For example, the managed network may logically consist of a number of heterogeneous domains
(e.g. LTE, WiFi, IP Core), each consisting of a number of network elements (e.g. access points, eNodeBs, routers,
links), which also consist of the relevant supported operations and manageable objects. The translation process
will refine the initial business goal to a number of sets of policies, reflecting this hierarchy (e.g. policy sets for
LTE, WiFi, IP Core domains and subsequent policy sets for access points, eNodeBs and routers). This network
hierarchy related information can be extracted from the network inventory system or can be derived by using a
number of available tools that automatically generate network topology data using discovery techniques.

FP7-UniverSelf / Grant no. 257513 77

D2.2 — UMF specifications: Release 2

In line with the above, the proposed policy translation methodology relies on ontology-based policy refinement
approaches and it is in line with the translation methodologies studied in [3] and [4]. The translation process,
which is described in detail below, makes use of OWL/SWRL for the representation, translation and reasoning
of policies. In addition, the translation process adopts the Policy Continuum approach presented in [5]. In the
example illustrated in Figure 30 of five different levels / views are defined, each of which constitutes a different
representation of the initial business goal.

In each level of the policy continuum, a series of OWL classes is defined, enriched with object and data
properties in order to express semantic relations. These classes conform to the considered Policy Ontology, by
means of inheritance. Traversing the Policy Continuum in a bottom-up approach, OWL classes represent
network concepts in a natural-language oriented approach. For instance, the concept of “USER” is defined in
each level of policy continuum, as it can be depicted Figure 30 with different data properties in each layer (i.e.
User Class, hasUC).

v Thing v-mu{opDataProperty Annotations
v- @ User ~-"hasUc
Y- Business_User
Business_Bronze
Business_Gold
Business_Silver
¥--@Domain_User
Domain_Bronze
Domain_Gold

Domain_Silver
v-- @ Network_Element_User

[] Functional Domains {intersection)
Network_Element_Bronze User
Network_Element_Gold
NEtWOrk_EIEmEnt_S"VEr Ranges
7@ Network_User ®int
Network_Bronze
Network_Gold Fauivalertpropeies

Network_Silver
¥v--{0 Operation_User
Operation_Bronze Disjoint properties
Operation_Gold
Operation_Silver

Super properties

Figure 30. The concept of USER in OWL.

The transition between consecutive policy continuum levels is achieved through the use of SWRL rules. SWRL is
a W3C [6] specification that combines OWL DL and RuleML languages. Rules are of the form of an implication
between an antecedent (body) and consequent (head). The intended meaning can be read as: whenever the
conditions specified in the antecedent hold, then the conditions specified in the consequent must also hold.
Considering the examined approach, SWRL rules constitute the intermediate among policy continuum levels
and achieve the translation from business to operation level concepts. An indicative example of SWRL rule is as
follows,

Policy(?p) AND hasBussinessUser(?p, ?buser) AND Business_Gold(?buser) AND hasNetworkUser(?p, Pnuser) ->
Network_Gold(?nuser) AND hasUC(?nuser, 1)

For the considered SWRL rule, the antecedent part examines if individuals of Business_Gold class exists. If so, a
one-hop step to the Network level exists where the user individual is assigned a semantic property value. As a
consequence, the definition of both OWL classes and SWRL rules provide us with ability of simplified modelling
and automate reasoning. No extra effort is considered, apart from the initial specification (on business level) of
the appropriate OWL-class individuals.

The translation process (for the case of 5 policy levels) is illustrated in Figure 31. The translation process
comprises the following steps (for simplicity we assume 5 level of policies, while this approach can be easily
configured to support any number of policies selected):

Step 1: The initial business goal (relying on the business goal level of policy continuum) is classified to a Goal
Category based on operator’s selections

FP7-UniverSelf / Grant no. 257513 78

D2.2 — UMF specifications: Release 2

Step 2: The business goal is translated to one or more network level policies based on a) Goal Category to KPIs
mapping and b) combination of high level semantics (e.g. “High level of Speed”) and service classification (e.g.
Transactional service) to KPI values (e.g. KPlpeay < 50 msec) mapping.

Step 3: For each network level policy a series of template policies (for all the subsequent levels) are extracted
from the policy template pool. The selection of the appropriate policy templates is done based on the set of
KPIs involved and the initial goal classification. In general each policy template is a policy skeleton that contains
the policy structure and the policy variables, while the values of variables are missing. During the translation
process the missing values are filled and the real policies are generated.

Each network level policy is translated to a set of domain level policies. This translation is based on: a) actual
network hierarchy (the composition of network to domains and the type of each domain), b) the translation
algorithm and c) the domain level template policies.

Step 4: The translation algorithm specifies the way in which a KPI performance or a parameter value is shared /
split among the available domains. In its simplest form the algorithm translates KPl / parameter values
proportionally among domains based on weights assigned to each pair of {domain, KPl/parameter}. An
example of domain weights per KPI/parameter is illustrated in Table 9. Thus:

DomLevel __ * NetLevel
KPI =W, ; *KPI,

DomLevel NetLevel
where d.i is the value of KPI i for the domain d on domain level, d.i
network level, and Wy is the weight assigned to domain d and KPI i.

is the value of KPl i on

More complex algorithms can be implemented as well, or different algorithms can be used based on the
number of policy levels and the algorithm’s objectives without losing the generality of the proposed approach.
The weight values can be specified by the operator or can be estimated by the framework by using knowledge
building functionalities (e.g. initially all weights are equal, while during network operation weights are modified
automatically by knowledge components based on monitoring) and therefore, increase the level of automation
(minimum operator effort).

Then, the domain level policies are generated based on the domain level policy templates selected in step (3).
During this phase, the generated policies are customised in terms of filling / extending the policy skeletons
according to the above estimations of KPI and parameter values.

(o

Policy [Business Goal Level] m

Ter:plzlwlte — Hierarchy /
00 > < Topology
SWRL Translation
Network
Policies [Netw&k Level
> < Domains

SWRL Translation

Domain .
[Domain Level

Policies
Network
> < Elements
Network SWRL Translation
Element Network Element Level
__Policies | —

> < Operations
Operation SWRL Translation

Policies [Operation Level

(S—

Figure 31. Policy translation process.

The SWRL rules used support KPI evaluation, by adding class relations and swrl semantics (e.g.
swrl:greaterThan(), swrl:equal()).

FP7-UniverSelf / Grant no. 257513 79

D2.2 — UMF specifications: Release 2

Step 5: Each domain level policy is further translated into a set of network element level policies. This process
is similar to step (4). The translation is based on: a) actual domain hierarchy (the composition of domain to
network element), b) the translation algorithm and c) the network element policy templates. The translation
algorithm uses weights in order to translate KPl/parameter values on domain level to respective values on
network element level. Then, policies are generated based on the network element level policy templates
selected in step (3), properly extended to include the results of the translation algorithm.

Step 6: On the final level each network element level policy is further translated to a set of operational low
level policies. The translation is realised by generating operation policies from the operation policy templates
and enhancing them with KPI/parameter related information. In this step a mapping is realised between the
involved KPls/parameters and the available operations/functions of the network elements. In practice, the
derived operations are already described in policy templates, while the operation parameter values are
determined by the translation algorithm.

Table 9. Domain Weights per KPl/Parameter

Domain i
KPI weights Parameter weights
KPI1 KPI1 KPIn Parl Par2 Parm
Wipi1 Wipi2 Wipi,n Wiara Woar,2 Woar,m

4.1.2 Policy validation, conflict detection and resolution

Policy conflict detection should be performed in all stages of policy translation between the different policy
levels. If the outcome of the policy conflict detection is that the conflict cannot be resolved, a proper
mechanism has to be designed, which will translate the conditions that led to this decision to a human friendly
formulation, for the enlightenment of administrators/operators. Based on this, it may be required the
alteration of specific business goals from the operators.

In this section a brief description of policy conflict validation and detection strategies is provided. Firstly, we
present the state of the art approaches that are available in the literature and have been used as a basis for the
production of our approach.

Policy validation, policy conflict detection and conflict resolution have attracted research interest over the past
years. In [7] the authors describe a set of methods that are necessary to be applied in order to resolve conflicts.
More specifically, approaches for monitoring conflicts at run-time and for conflict resolution are analyzed.
Authors’ approach is based on their previous work on the specification of policy model [8] and the methods
they developed for conflict detection [8][9][10]{11].The approach in [7] has set the basis for [12] where the
authors present an approach towards policy conflict analysis based on the formalization and reasoning
provided by Event Calculus and its application in the domain of DiffServ QoS management. Finally, in [13] an
approach that is based on free variable tableaux for detecting conflicts resulting from the combination of
various kinds of authorization and constraint policies used in Web Services environments is introduced. The
method not only enables static detection of policy conflicts such as modality and static constraint conflicts (i.e.
propagation, Chinese wall, time constraint etc.) but also yields information that is helpful for correcting the
policies. The approach can be applied to various policies written in different policy definition languages.

In the methodology followed, a transformation of the problem of anticipating conflicts between policies into an
ontology consistency checking problem will be studied. This process could be based on this conflict resolution
cycle: identify-classify-detect-resolve. Future work for conflict resolution comprises the investigation of static
and dynamic conflict detection strategies as well as studying conflict resolution strategy based on the
establishment of policy precedence as it also suggested in TM Forum.

In the followed approach policy conflict detection is performed in the final stage of policy translation (i.e.
operation level). In case the outcome of the policy conflict detection is that the conflict cannot be resolved, a
proper mechanism has to be designed, which will translate the conditions that led to this decision to a human
friendly formulation, for enlightenment of administrators/operators. Additionally, a potential the requirement
that should also be taken into consideration is the requirement for alteration of specific business goals from
the operators, in order to allow as many policy rules as possible.

FP7-UniverSelf / Grant no. 257513 80

D2.2 — UMF specifications: Release 2

Policy Conflict Resolution (PCR) module in our case is considered as part of the Policy Decision Manager logical
block. As shown in Figure 32 PCR interacts with the Policy Translation module. More specifically, PCR receives
as input the outcome of the Policy Translation procedure. This outcome is formed as a PolicySet object that
conforms to the TM Forum standards. This object includes all the low level policy rules (i.e. policy rules that can
be understood by the NEMs) that should be applied to the NEMs. The result of the PCR is the production of a
conflict-free Policy Set object. This outcome is passed then to the Distributor and so on until they are applied to
the NEMs. Future plans of our work include the production of a reverse process regarding policy translation,
which will produce the refined Business Goals based on the new Policy Set object produced by the PCR module
and will provide these Business Goals to the operator.

> Gul

1. Busingss Laoals

| Palicy Decision Manager
4. Refined Business Goals

A 4

2_ Palicy Sat Policy Conflict

Policy Translation |« .
Resolution
3. Conflict Frea Policy Sat

A4

5. Apply rules to NEMs
¥

Distributor

¥ ¥ h J

MEM A MEM B MEM C

Figure 32. Policy Conflict Resolution interaction.

Figure 33 presents the steps of execution of the Policy Conflict Resolution module. As mentioned afore, PCR
receives as input a Policy Set object from the Policy Translation module. Then PCR is executed in 3 logical steps:

e Identification of newly expressed rules and already deployed rules
e Conflict detection and suggested actions for resolution
e Production of conflict free policy set

At the first step PCR receives the Policy Set object and decomposes the list of Policy Rules included in it to 2
lists (i.e. one with the deployed policy rules and one with the new policy rules) based on a cache memory
preserved. Then, the second step is further split in 3 steps checking for conflicts regarding the events, the
conditions and the actions respectively. It should also be noted that during the conflict detection on conditions
of the policy actions a set of conditions that do not lead to conflict and could replace the initial policy
conditions is produced. Furthermore, when the algorithm is checking for conflicts on actions a complementary
predefined matrix, namely Service Interdependencies matrix is checked to evaluate whether two actions are
conflicting or not. Finally, a conflict-free policy set object is produced and returned to the Policy Translation
module. This policy set contains the modified Policy Rules that do not contain conflicts. Also, the Cache
memory with the deployed and new rules is updated.

FP7-UniverSelf / Grant no. 257513 81

D2.2 — UMF specifications: Release 2

» Translation
Policy Set
'L—PoTic? EoﬁﬂiE:ﬁeEoEﬁBrT_}
A
— Identification of new
ITachs | e rules and deployed

Deployed | rules

rules ! List:Deployed Rules

List: New Rules
New rules
h
——- Conflict detection
on event level

List: Pair<Deployed Rule,

New Rule>
Policy Set R
goll() e 2
= Il Conflict detection PTOJ:ICN?TH of
on conditions level » confiict free o
conditions |
——————————— J
List: Pair<Deployed Rule,
New Rule>
serice]ﬂls‘fd;pendencaes List: Conflict Free Policy
z; x Conditions
A

: Conflict detection

l yrdet .
Check if actions on action level
are conflicting

List: Pair<Deployed Rule,

‘ New Rule>
Lg;?::: Replace conflicting conditions
L of the rules in the list with non

conflicting conditions

Figure 33. Policy Conflict Resolution flow.

4.1.3 Policy assessment mechanisms

The successful translation of high level to low level policies is of high importance from the operator’s point of
view. Term “successful” is used to express the sufficiency of the derived policies to accomplish the goals
described by the operator in the high level policies. A successful policy will lead to well controlled and efficient
network operations, while an unsuccessful policy may lead to misconfigurations, QoS / QoE degradation and
network instabilities. Thus, a mechanism able to evaluate the policy translation process and measure the gains
from the policy application is necessary. The success of a policy in accomplishing the goals described by the
operator is in strong relation with the trustworthiness of this specific policy. Trust of policy can be defined as a
comparison between the reference behaviour (the behaviour implied in high level policies) and the actual
behaviour (based on measurements) of the network after the implementation of the policy. According to this,
policy trustworthiness is a measure of policy assessment.

In order to estimate Trust, the Entropy-based trust model [15] can be used which uses uncertainty as measure
of trust. In the proposed method of trust estimation, the concept of trust describes the certainty of whether
the implemented policy will fulfil the objectives described in the high level goals. Information theory states that
entropy is a nature measure for uncertainty [16]. Thus, entropy-based trust value is defined as:

FP7-UniverSelf / Grant no. 257513 82

D2.2 — UMF specifications: Release 2

1-H 05<0<«1
T 4ubject : policy, successful ¥ {H(p)(pi 0ep ;5
— < P <U.

where H(p) = -p log2(p) - (1 - p) log2(1 - p) is the entropy function and p=P{policy,successful}.

According to this formula, the trust value is a continuous real number in [-1, 1]. This definition satisfies the
following properties. When p=1, the subject trusts the policy the most and the trust value is 1. When p=0, the
subject distrusts the policy the most and the trust value is -1. When p=0.5, the subject has no trust in the policy
and the trust value is 0. In general, trust value is negative for o< p<o.5 and positive for o5<o<1. Trust value is

an increasing function of p.

According to the aforementioned trust methodology, the policy assessment function calculates p after the
implementation of a policy, based on network measurements collected by agents (reflecting a set of KQls and
KPIs according to TM Forum SLA Management Handbook) and assigns to this specific policy a value of trust. The
estimated values of trust for specific policies can also be presented to the operator through the H2N
Governance GUI in order to be able to supervise and control the underlying autonomic functioning.

An example of Trust of policy estimation is illustrated in Figure 34. Trust of policiesin this scenario the
trustworthiness of three candidate policies are estimated based on network measurements. In detail the
following KPI is selected for policy evaluation: 90% of the end-to-end packet delay values should be below
200msec. The value of P is calculated after the implementation of the policy, while it is assumed that a policy is
successful if the KPI is valid (Trust value > 0). The Table the estimated values of p, H(p) and policy
trustworthiness according to the aforementioned methodology. The assessment of policy translation indicates
that both policies are successful. In addition, as far as Trust of policy is concerned, it becomes obvious that
policy of scenario 2 is more trustworthy than policy of scenario 3. In reality, policy of scenario 3 is
untrustworthy at all as its value is near 0. In a real implementation, assuming that the Trust threshold for policy
evaluation process is set to 0.3, the policy of simulation scenario 3 will be rejected, having policy of scenario 2
as the only candidate solution.

Gold User — End-to-end Delay
> S o1
cenario
45 Scenario2 |
4 Scenario3 [
35 —— A
3
:’;2.5
38 2 |
1.5
1
05 1
o L UN 7 L A . A
350 450 550 750 850
Time (sec)
Policy Activation Time
Policy p H(p) Trust
Scenario 1: Absence of high level - - -
policies
Scenario 2: A high level policy is 0.8341 0.648 0.3519
translated to specific low level actions
Scenario 3: A high level policy is 0.6708 0.914 0.086
translated to different low level actions

Figure 34. Trust of policies

FP7-UniverSelf / Grant no. 257513 83

D2.2 — UMF specifications: Release 2

4.1.4 Network supervision mechanisms

One of the most important decisions is about which information to show so to fulfil the requirements from the
human network operators. The main QoS factors contributing to service performance are service support,
operability, accessibility, retainability, integrity, security and performance [14]. Therefore, each service
performance can be characterised by a combined set of the aforementioned QoS factors. The parameters
chosen as contributors to the QoS factors may be service specific, technology specific, or service and
technology independent parameters. The parameters selected are those that are fundamental to the service
and affect the customer’s experience. The selected parameters which are reflecting the selected KQls (Key
Quality Indicators) of the services and the relative KPIs (Key Performance Indicators) can be monitored in real
time by the operator thought the H2N interface. In addition, alarms can be programmed (manually or
automatically) to be generated in case of performance degradations or violations (e.g. SLA violations).

The chosen parameters can be further combined into a single QoS value or index (to be presented to the
operator) which represents the delivered QoS and provides an overall view of how well the delivered service
meets the committed service.

4.2 Information and knowledge management mechanisms

4.2.1 Information collection and dissemination mechanisms

We discuss below a number of ICD mechanisms or algorithms that could be potentially used in the
corresponding sub-block. At this stage of work, we selected mechanisms that partners of the consortium are
already familiar. Of course, this list of mechanisms is not exhausting, since it is an ongoing work to evaluate or
suggest appropriate mechanisms for certain environments. The same argument is valid for all other IKMS sub-
blocks too.

An information collection approach we consider here is to use a number of distributed information collection
points deployed in the different NEMs. The Information Collection Points (ICPs) act as sources of information:
they monitor hardware and software for their state, present their capabilities, or collect configuration
parameters. The IKMS supports three types of information collection queries coming from the ICD to a NEM
ICP(s): (i) 1-time queries, which collect information that can be considered static, e.g., the number of CPUs, (ii)
N-time queries, which collect information periodically, and (iii) continuous queries that collect information in
an on-going manner.

ICPs should be located near the corresponding sources of information in order to reduce communication
overhead. Filtering rules based on accuracy objectives should be applied at the ICPs, especially for the N-time
and continuous queries, for the same reason. Furthermore, the ICPs should not be many hops away from the
corresponding IKMS nodes (e.g., in case of a distributed IKMS infrastructure). For example, in case of an
information aggregation process, the network overhead between the ICPs and the Information Aggregation
Component should be minimum.

An ICP can have 5 main components: the sensors, a reader, a filter, a forwarder and an ICP controller. These are
described below.

The sensors can retrieve any information required. This can include common operations such as getting the
state of a server with its CPU or memory usage, getting the state of a network interface by collecting the
number of packets and number of bytes coming in and out, or getting the state of disks on a system presenting
the total volume, free space, and used space. In our implementation, each sensor runs in its own thread
allowing each one to collect data at different rates and also having the ability to turn them on and off if they
are not needed.

The reader collects the raw measurement data from all of the sensors of an ICP. The collection can be done at a
regular interval or as an event from the sensor itself. The reader collects data from many sensors and converts
the raw data into a common measurement object, consistent to the UniverSelf information model and/or an
intermediate format for the channel communication (i.e., to minimize overhead).

The format may contain meta-data about the sensor and the time of day, and it contains the retrieved data
from the sensor. The filter takes measurements from the reader and can filter them out before they are sent
on to the forwarder. Using this mechanism it is possible to reduce the volume of measurements from the ICP
by only sending values that are significantly different from previous measurements. By using filtering the ICP

FP7-UniverSelf / Grant no. 257513 84

D2.2 — UMF specifications: Release 2

produces less load on the network. In our case, the filtering percentage matches the accuracy objective of the
ICD sub-block requesting the information.

The forwarder sends the measurements onto the network. The common measurement object is encoded into a
network amenable measurement format. The measurements are encoded using XDR [17] as a way to minimize
the size of the transmitted data. The XDR format is commonly used in monitoring systems [18] in order to
reduce network loading.

The ICP Controller controls and manages the other ICP components. It controls (i) the lifecycle of the sensors,
being able to turn them on and off, and to set the rate at which they collect data; (ii) the filtering process, by
changing the filter or adapting an existing filter; (iii) the forwarder, by changing the attributes of the network
(such as IP address and port) that the ICP is connected to. These parameters should meet the information
collection requirements coming from the ICD IKMS sub-block.

The IKMS is aware of the information collection constraints of the NEMs. The information collection constraints
are being communicated during the NEM registration process, which includes an equivalent registration of the
NEM as an information source. The ICD supports quality enforcing functionalities using filtering and/or
information accuracy objectives, in order to meet such constraints and the global performance goals coming
from the Governance.

Furthermore, the IKMS infrastructure can collect information from the NEMs producing information, using
different information monitoring techniques. An example is the VLSP infrastructure which was implemented in
the context of the UniverSelf.

In the UniverSelf project, we consider the pub-sub information/knowledge querying method as an important
functionality that can synchronize communication between NEMs, the Knowledge block and the other UMF
core services blocks. With the publish-subscribe type of systems it is possible to achieve fully distributed system
for collecting the information [19]. It is also easy to keep an up-to-date list about what information is available
from which entities and the associations between the information sources and information users entities. The
information about the available information and entities and their associations should be also one input for
building the large-scale knowledge management. The simplicity of the xml-based communication protocol of
such schemes provides an abstract layer, while a rule description (policy) language can be used to introduce
observation capabilities (monitoring). Examples of pub/sub implementations that are already part of the
UniverSelf demos are the Distributed Decision Engine and the Siena infrastructure.

Collection, retrieval and querying of context and knowledge of the network can be achieved by employing
service discovery protocols. These protocols are tailor-made for acquiring service specifications existing in the
system; however their use can be extended for discovering the context information. There are a number of
criteria in comparing discovery protocols but they can also apply for discovering context/knowledge. Aspects
on the discovery protocols can be summarized to:

e Whether it is Directory-based or Directory-less
e The level of scalability it supports
e Level of stability of the structure

We discuss several approaches to information/knowledge dissemination below. For example, information
diffusion could be used:

e Gossiping. Gossiping, also known as epidemic communication, is aiming at spreading information in
order to obtain an agreement about the value of some parameter. Gossiping algorithms are mainly
based on the assumption that data are randomly propagated in a network of nodes where such a
random propagation can be achieved using specific contact lists per node [18][20]. Thus, each entity
interacts only with a few nearby neighbours (e.g., determined by an overlay or by a communication
wireless protocol): it can either establish one interaction at a time, or broadcast the information to all
its neighbours. Each entity passes its belief of value of the parameter to (some of) its neighbours;
when an entity receives such values from its neighbours, it processes and combines them with its
current belief. Then it contacts its neighbours to (re-)broadcast to them the newly computed value.

e Random choice. Random choice is used break symmetry among a cluster of elements of the same
type, allowing the element to differentiate their behaviour. Moreover, random choices could be
performed during the execution of algorithms, so as to select one of the neighbours linked with an
overlay. Random choices could be represented by non-deterministic selections during the execution of

FP7-UniverSelf / Grant no. 257513 85

D2.2 — UMF specifications: Release 2

the (non-deterministic) automata describing the behaviour of the element or through a random
selection of a (numeric) value.

Fields. The value of a local variable of a computing element in a system (e.g., the ensembles of sensors
or of mobile devices) can be considered as a value of a field over the discrete space occupied by the
system. If the density of elements is large enough this field of values may be thought of as an
approximation of a field on the continuous space. The single elements can process the values in the
field. For instance, through gossiping-based protocols, each particle must repeatedly update the value
of the solution to be the average of the values sent by its neighbours: this algorithm will eventually
converge to the average of all the values in the fields. Moreover, they could apply algorithms for
solving differential-equation on a discrete field in order to estimate the evolution of the values. Fields
are also related to other bio-inspired primitives, such as gradient and reaction-diffusion.

Gradients. The gradient primitive takes inspiration from the chemical-gradient diffusion process that is
crucial to biological development. Gradients imply the estimation of the distance (and the direction
and, then, the path) from each element to the nearest component designated as a source. Each
element could store in a local variable the estimated value of the distance, and, so, they can create a
field.

Reaction-diffusion. Reaction-Diffusion primitive describes the evolution of a field, according to a
biological and/or chemical metaphor. In principle, a system can be seen as ensembles of elements
each of which performing some type of function on the field value (i.e. reaction) and interacting with
other elements by means of some communications protocol (i.e. diffusion).

Store and forward. Asynchronous data-information diffusion can also be achieved by using smart
communication primitives that implement store and forward mechanisms both in the producer’s and
consumer’s processes. Communication appears asynchronous and anonymous to the application
without the need for an intermediary entity.

Aspects that are important for the information dissemination and the relevant discovery underlying
mechanisms are summarized below:

4.2.2

Utilisation of communication means. Unicast is the most common form of communication in
discovery protocols. The sender explicitly addresses the receivers, to which sends the data (query,
reply, announcement, etc.) through the network. UDP multicasting is another form of communication.
In this approach, a number of nodes form a multicast group by sending a few initiative unicast
messages. The last form uses Link Layer broadcast. In this approach, a packet is sent to every node in
the vicinity, e.g. within one hop or container network domain.

Discovery scope. Discovery messages should be limited from unnecessary distribution over the
network. By defining proper scopes, unnecessary processing on context clients, providers and
information bases are minimised. Scope definition can be based on user rule, other context
information and network topologies. Advertisement/ replying policy: discovery protocols are different
in replying method to the queries or making announcements to the network. In replying the queries,
the context providers may reply to any query they receive, regardless of being necessary or not. In
making the announcements, they may also send periodic advertisements to the network, not caring
how clients are interested in receiving the adverts. This is called blind advertisement. The benefit of
blind discovery is simplicity at the cost of redundancy.

Retransmission policy. Discovery protocols use retransmission of advertisements or queries in
different situations. Retransmission of an advertisement can be retried for emphasising the advert and
assurance on receipt of adverts by the clients, or for refreshing and updating context information.
Refreshing advertisements are usually less frequent than retrying ones. Retransmission of
advertisement can stop after a certain time, and interval between the advertisements can vary.

Information storage mechanisms

There are some issues that should be considered in using the IS:

Centralised/ distributed (flat)/ distributed (hierarchical). The directory-based discovery structure is

categorised into centralised and distributed directory. In centralised directory mode, only one directory exists
in the network, whilst in distributed directory, several nodes maintain the information. In the distributed mode,

FP7-UniverSelf / Grant no. 257513 86

D2.2 — UMF specifications: Release 2

the nodes form an overlay network. If the overlay network is formed on a peer-to-peer basis, the structure is
called flat, otherwise if it is structured as a tree, is called hierarchical directory.

Context information state. Information states are usually divided into soft and hard states. A soft state context
expires after a defined lifetime. After the lifetime, the context information either expires (in which the
information bases delete it from their list), or re-announces its presence, then the information bases and
clients refresh their cache/directory. In contrast, a hard state context should be periodically polled by the
clients and the information bases for checking its availability.

Cache management. Cache containing context information can expire with time, based on the lifetime of the
context and change of context. As an example, possibility of unavailability of context info in a network can
cause expiration of the cache contents. Cache management system can deal with invalidity of data in different
ways; it can either remove the data from cache, or mark it as expired, asking for an update from the context
providers. In addition, context providers should refresh context specification prior to expiring lifetime of the
context. Choosing proper timeout intervals for refreshing and expiring the cache contents is very important,
since improper setting the values can cause resonance and instability in the system. If the cache expires before
receiving a late refreshment message, it either deletes the info or sends an update request, whilst proper on
time sending an advertisement can prohibit unnecessary cache entry deletion or updating requests.

We are looking at the MongoDB approach for the information storage, which has unique features such as:
e object persistence layers
e automatically providing historical details for the stored information.
e Supports a geo spatial element, etc.

Another important aspect is to synchronize the information base with the pub-sub mechanism. For example, a
solution relevant to the Distributed Decision Engine pub/sub approach [28] is capable of caching a short-term
asynchronous dynamic information (events) over the network. The main responsible entity for caching
functionality in DDE is EventCache(s), which performs, in addition for caching, event distribution and filtering
functionalities. Typically in DDE, EventCaches are parallel connected to formalize a distributed information
(event) caching system. Incoming event at EventCache is always cached (and forwarded towards the possible
interested consumers entities). In addition, every event has a certain time-to-live value (defined by the
information origin), after this predefined time, if not replacing event received before, event become invalid. If
incoming event’s certain properties (origin, event identifier and type) are the same as for already existing event
at EventCache, the old one will be replaced with the new one. The producer responsibility is to update the
event before the time-to-live value expires.

In case we decide that the IKMS should guide a direct NEM to NEM communication, distributed information
storage may have peripheral nodes inside NEMs or a directory service may be looked up from a NEM to locate
a specific piece of information in another NEM, before the direct communication takes place. This aspect is
currently an open issue.

4.2.3 Information processing and knowledge production mechanisms

A main aspect of information processing is information aggregation. An efficient approach is to use a
distributed Information Aggregation (IA) sub-block that consists of a number of nodes: the Information
Aggregation Points (IAPs).

The IAPs apply aggregation functions to the collected information (e.g., measurements). The aggregation
process increases the level of information abstraction, thereby transforming the data into a structured form,
but at the same time reducing the load on the network. Aggregation works in situations where acting NEMs do
not need a continuous stream of data from a NEM that produces information, but can get by with an
approximation of the data. For example, getting an occasional measurement with the average of the volume of
traffic on a network link may be enough for some applications. Some common aggregation functions include
SUM, AVG, STDDEV, MIN and MAX.

A structure of an IAP could have 7 main components: a collector, an aggregation specifier, a selector, an
aggregator, a filter, a forwarder and an IAP Controller. All of these components are described below.

The collector collects measurement data from the network and converts the measurement format (e.g., XDR
encoded) into a measurement object (consistent with the UniverSelf information model). After this the
measurement objects are saved in a local NEM data store for later aggregation processing. The local data store

FP7-UniverSelf / Grant no. 257513 87

D2.2 — UMF specifications: Release 2

can use the Timeindexing Framework [20][21] which allows any kind of data to be stored and retrieved using
timestamps or time intervals. The Timeindexing Framework provides the mechanism by which arbitrary
sequences of measurements can be selected and aggregated. It creates an index into the data, called a time
index, and provides an API for accessing the data.

The aggregation specifier, the selector, and the aggregator are actually combined into an aggregation engine.
The aggregation specifier specifies when the aggregator executes, what it aggregates, and how it aggregates.
These three specifications are similar to those used in SLA compliance systems [22], because the process of
analysing the data is similar.

The when specification is of the form: wake up every N seconds, which will cause the aggregation engine to
wake up regularly to provide an aggregation. The “what” specification takes the form of a time interval, such as
“from now, back 30 seconds”. The “how” specification is the name of a function to aggregate the data, such as
AVERAGE, SUM, etc.

The selector selects the required measurements to aggregate using the "what" specification. It determines
what data is eventually chosen by applying the time interval, such as “from now, back 30 seconds”, to the time
index and selecting the relevant measurements. In this case, it will cause the selector to select the most recent
30 seconds worth of data. As the data store uses time indexing, the time interval can be changed arbitrarily.
Once the selection is complete the selected data is passed to the aggregator.

The aggregator aggregates the selected measurements presented by the selector. It uses the how specification
to aggregate data. Although it is most common to use aggregation functions, such as SUM, AVERAGE, STDEV,
MIN and MAX, the IAP Controller can pass in an arbitrary function into the aggregator in order to do the
aggregation.

This gives considerable power and flexibility when determining aggregations. Once the aggregation is
calculated, the aggregated measurement data is passed to the filter. The filter takes measurements from the
aggregator and can filter them out before they are sent on to the forwarder. Again, this reduces the volume of
measurements by only sending values that are significantly different from previous measurements. Using
filtering in this way in the IAP, like filtering in the ICP, less load is produced on the network.

The forwarder sends the aggregated measurements onto the network. The common measurement object is
encoded into the same network amenable format as in the ICP (e.g., the XDR). By having the same network
format, the consumers of the measurement data do not need to know if data has come directly from and ICP or
has come from an IAP. This allows hierarchies of elements to be composed as an IAP can further aggregate data
from other IAPs, if this is required.

The IAP Controller controls and manages the other IAP components. It controls (i) the collector, by changing
the attributes of the network that the IAP listens to, (ii) the aggregation process, by managing the aggregation
engine and by passing in the aggregation specifier, (iii) the filtering process, by changing the filter or adapting
an existing filter, (iv) the forwarder, by changing the attributes of the network (e.g. IP address and port) that
the IAP sends to.

The aggregation engine itself is flexible enough to be given different aggregation specifications by the IAP
Controller in order to process the data in varying way. For example, it can be configured to wake up once an
hour and select data for the last day, and then apply an aggregation function. This is achieved using a
mechanism that relies on plugins. These plugins represent code blocks, which can be pre-defined, such as an
average aggregator, or can be defined to suit the need.

In practice, the IAP controller is handled from the different IKMS sub-blocks or the other UMF blocks. For
example, new aggregation functions could be specified from the Governance block, accuracy objectives or
filtering could be specified by the IFO sub-block etc.

Information dissemination is done through the ICD. As a NEM may request a specific piece of information from
the IKMS, the deployment location of the IAPs should also consider the locations and the traffic requirements
of the NEMs retrieving information. As well as requesting information, a NEM has the option to subscribe to a
pub/sub based information dissemination service by setting an appropriate threshold to a specific type of
information. Whenever this threshold is exceeded, the application is notified.

4.2.4 Information flow optimization mechanisms

The IFO sub-block optimizes information flow using a number of optimization algorithms. These algorithms can
potentially implement a variety of optimization tasks that involve performance related tradeoffs. Example

FP7-UniverSelf / Grant no. 257513 88

D2.2 — UMF specifications: Release 2

algorithms include (i) optimizing with respect to the network protocol deployed, or (ii) trading processing cost
for communication cost by using compression techniques. The optimization considered in this document,
however, concerns the placement of the IAPs in the network. This is a process, which is carried out when the
IKMS infrastructure is initially deployed, but can also be triggered at run-time to react to changes in the
network, or to emerging requirements coming from the Governance or Coordination blocks.

The IAP placement is carried out by a novel placement algorithm for dynamic networks, called Pressure which
greatly improves performance compared to other proposed placement algorithms. Pressure is a simple and
locally optimal greedy algorithm that minimizes traffic overhead. This algorithm is combined with a system for
predicting the lifespan of nodes, and a tuneable parameter is also given so that a system operator could
express a preference for elected nodes to be chosen to reduce traffic, to be “stable”, or some compromise
between these positions. The combined algorithm called PressureTime is lightweight and could be run in a
distributed manner.

The Pressure algorithm is a locally optimal, greedy algorithm for placing a new management node in order to
reduce network traffic. By locally optimal it is meant that each single node selected is the optimal node to
reduce network traffic at that time but this does not account for the future evolution of the network or future
nodes which may be selected. A variation of Pressure, also used in this NEM, is called PressureTime and
combines the Pressure algorithm with a tuneable life-time maximisation algorithm that attempts to select
nodes based on their expected remaining lifetime.

The desirable properties of selected nodes are:
e onlya “small” subset of nodes are selected,
e nodes are not “too far” from their nearest leader and hence traffic over the network is minimised, and

e nodes which are selected will stay selected for a reasonable period of time before they either “die”
(are deactivated or moved to a different part of the network) or are deselected.

Long-lived nodes are desirable because selecting nodes for management or for data collection will not be
effective if the selected node disappears from the network soon afterwards.

The twin objectives of the algorithms described here are (i) to select nodes which reduce management traffic
on the network and (ii) to select nodes which exist for a long period of time. Instead of creating an objective
function that is a weighted sum of these objectives, the approach taken here is to investigate tuneable trade-
offs. Using this method, the network manager could choose a node selection policy which is efficient in terms
of management traffic, or in terms of management node stability, or in terms of some combination of these
aims, as appropriate. More details on these algorithms can be found in the papers [23][24][25][26][27].

4.3 Coordination mechanisms

4.3.1 Optimization and conflict avoidance mechanisms

As already mentioned, the role of the “Optimization and conflict avoidance” function is to guide the re-
computation of the resource allocation to the NEMs in a way that optimizes the global system’s utility,
capturing even the end-to-end optimization of different segments and for the detection and avoidance of
conflicts between NEMs. The lack of this function may lead not only to sub-par performance but also to
unstable and oscillatory behaviours.

A number of mechanisms can be considered in the context of this function with various levels of complexity
and intelligence, which is instructed by both the nature of the NEMs that are to be coordinated and also their
capabilities in terms of providing the required inputs to the coordination mechanisms.

One key factor that influences the selection and applicability of the appropriate coordination mechanism is the
timing of NEMs leading to a category of mechanisms that are based on the “separation in time” strategy. The
separation in time strategy in principle dictates that conflicting NEMs should not be allowed to execute
simultaneously their enforcements to the network.

For NEMs that have similar time scales this translates into mutual exclusion strategies, where only one NEM at
a time is allowed to execute and enforce its actions. In the simplest form this can be implemented by a random
token passing mechanism, where the selection of the NEM to “run” is very simplistic without taking into
account network performance objectives. This method, however, even though simplistic it offers the advantage

FP7-UniverSelf / Grant no. 257513 89

D2.2 — UMF specifications: Release 2

that poses very minimal requirements into NEMs in terms of having to be able to predict the outcome of their
actions.

A more sophisticated application of a separation in time strategy is through the incorporation of utilities and
performance objectives in the token assignment decision. This means that all NEMs that are due to “run” at a
certain time point are able to predict the outcome of their actions (if they were to “run”) and the token can be
assigned not randomly, but each time to the NEM whose action is expected to maximize the network utility at
that time point.

Separation in time strategies can also be applied in the case of NEMs (processes) that have different time
scales. In such cases, processes that are optimized rather infrequently set the standard for those processes that
are optimized rather frequently. The fact that the slower moving processes are masters with respect to the
faster moving processes is a natural choice as slower moving processes are not agile enough to quickly react to
changes. It is worth noting that that a separation strategy does not necessarily have to be with respect to time.
It is also conceivable that processes where parameter changes are more costly, e.g. because reconfigurations of
parameters require a lot of effort, are masters with respect to those processes where reconfigurations of
parameters can be achieved rather easily. Yet another strategy makes the choice of separation dependent on
the measurements that are needed in order to make a statistical meaningful decision whether a parameter
configuration should be modified or not. Last but not least, it can also be helpful to group optimization
processes topic-wise as here obviously the likelihood of having a strong coupling is much higher than with
unrelated processes.

For NEMs that do not follow a strict cycle (e.g. non-periodic NEMs triggered by certain events during runtime)
the token passing mechanism may be requested by the NEMs themselves with the decision on the assignment
of the token or not depending —as before- on the intelligence of the underlying coordination mechanism, their
features (e.g. expected convergence time) and the capabilities in terms of predicting the outcome of their
actions on network performance.

Contrary to separation in time strategies, an alternative approach to the coordination problem is to try and find
a compromise in NEMs actions that maximizes an objective function indicative of the network performance.
That is, NEMs are not mutually excluded from running but they are considered at the same time. However,
their actions are coordinated so that they are not selfish and possibly even contradicting but they complement
each other in the best possible way.

A straightforward solution for this would be to integrate their objectives into one optimization function. In this
way, the common function will handle the conflicts of the two or more, maybe competing, objectives. A well
elaborated approach to do this is through multi-objective (MO) optimization. There are several methods to
solve a multi-objective problem. Some classical methods consist of converting the MO problem into a single
objective (SO) problem by either aggregating the objective functions or optimizing one objective and treating
the other as constraints.

In the case where the objective functions represent performance indicators of a network obtained through
measurements, the objective functions will only be known up to a random measurement error, which
decreases when the measurement interval becomes larger. In such cases, notions from stochastic optimization
(stochastic approximation) can prove beneficial into solving the optimization problem.

It is worth noting that optimization in the case of NEMs/processes operating at different time scales is also
possible. A particular case of interest is the hierarchical approach. Say that there are two utilities: the first
utility function is tuned on a fast time scale, so that the second can be considered quasi-static, and the second
is tuned on a slower time scale, so that the first utility always appear to have converged to its optimal value.
The approach easily extends to an arbitrary number of utilities as long as each of them has it’s time scale, and a
hierarchy (from the fastest time scale to the slowest) exists. The hierarchical approach is also linked to
situations where several agents have different objectives, where one agent is a leader, and the others are
followers. The optimal points are known as Stackelberg equilibriums in the context of game theory.

FP7-UniverSelf / Grant no. 257513 90

D2.2 — UMF specifications: Release 2

5 Standardization aspects

Sections 2, 3 and 4 provide the necessary definitions, processes, tools and methods for UMF, in order to
achieve unification of diverse autonomic solutions, governance of automatically managed infrastructures and
services, and “plug and play” of autonomic solutions within existing and future management ecosystems.
Despite the soundness of UMF vision from the research point of view, careful and well planned roadmap
towards standardization is required in order to boost its deployability and operator adoption. The roadmap
covers the identification of the parts of the UMF specification that should be standardized, as well as the
opportunities for contributions and actions in various relevant standardization bodies/groups, along with
possible standardization actions. These standardization efforts will facilitate acceptance and re-usage the
research outcomes, and adoption from the telecommunication/networking market.

5.1 UMF and Standardization

The key role of the UMF core entails the need for specification of standardizable interfaces associated with the
core components, in order to enable the transfer of the technology/system to marketable product. This
specification/standardization process requires identification of the characteristic information and messages to
be conveyed from/to each of the individual pairs of entities across the interface, but also and more
importantly, it encompasses the specification of the services that each of the block should offer to the rest
system (UMF entities or even end-users etc.) i.e. the operations that manipulate these information/messages.

NEM'’s definition implies that NEM’s can be developed by any actor of the telecommunication/networking
market: equipment vendor, network management system vendor, network operator, software developers
(NEM developers). In order to be ensured operation, interworking and cooperation of the new NEMs in UMF-
compliant networks, it is needed the standardization of the respective UMF/NEM specifications. These include
prescriptive generic models (i.e. NEM skin) and corresponding interfaces, which will guarantee high reusability,
openness and extensibility.

The definition of an information model that will serve UMF’s needs/objectives in regard of the modelling of all
the business and management aspects and processes (e.g. policies, resources, context information, knowledge)
is of high significance for UMF specification completion. Moreover, as UniverSelf targets at
unification/federation and end-to-end service management view spanning wireless/wired segments, it is
demanded the transformation of vendor/technology-specific management data and languages into a common
model used by UMF to perform its management functions. In this context, UMF needs a dynamic, extensible
and semantically rich model, in order to facilitate the automated mapping/translation to technology- specific
technology data models, merge/consolidate the information gathered from different network domains, and
perform advanced autonomic operations including reasoning, learning, and inferring higher level knowledge
crucial for the UMF operation.

Furthermore, as one of the main goals of UniverSelf is to demonstrate the reliability of autonomic solutions
and develop testing and certification processes, trust issues have to be part of the UniverSelf standardization
strategy. In this context, the relevant standardization efforts should cover the specification of the
parameters/metrics for UMF efficiency testing/assessing/certifying, as part of the interfaces exposed towards
the operator side (vertical trust).

Finally, as UniverSelf use cases represent crucial network problems, they can be submitted to standardization
bodies/groups in deriving further requirements and eventually in extending and amending the existing
functional design.

5.2 Standardization Opportunities
European Telecommunications Standards Institute (ETSI).

The objective of ETSI AFl (Autonomic network engineering for the self-managing Future Internet) Industry
Specification Group [29] is to develop pre-standard relevant specifications, and its operation is driven by three
Work Items (WI1).

AFI WI#1 is responsible for describing the scenarios and use cases, and defining the key operator requirements
that reflect real-world problems and can benefit from the application of autonomic/self-management

FP7-UniverSelf / Grant no. 257513 91

D2.2 — UMF specifications: Release 2

principles. So, UniverSelf can update these use cases and requirements based on its relevant technical
outcomes.

AFl WI#2 aims at designing a Generic Autonomic/self-managing Network Architecture (named GANA) as
reference model for engineering the Future Internet. This framework encompasses the specification and design
of functional blocks, as well as the characteristic information being conveyed in the reference points among
them. Therefore, UMF core functional blocks and associated interfaces can amend this work.

AFl WI#3 is composed of four branches that address different networking technologies and contexts: the NGN
reference architecture, the Broadband Forum (BBF) reference architecture, mobile network architectures
(3GPP and non 3GPP), and Wireless Ad-Hoc/Mesh/Sensor Network Reference Architectures. In this context,
UniverSelf can utilize work on UMF deployment aspects to enrich the relevant activities.

Furthermore, AFI is taking part to the new ETSI restructuring initiative: E2NA (Enhancing ETSI Network
Activities). UniverSelf, based on the gained experience of the first two years of research work, can take part in
the relevant discussions and contribute to the different aspects.

Finally, UniverSelf's work can be used as base for the creation of new AFI work items in order to tackle other
technical topics addressed by the project, such as trust and confidence building in autonomic networks.

TeleManagement (TM) Forum.

TM Forum [30] focuses on enabling service provider agility and innovation, through service creation,
management and delivery for providers and operators. From the several evolving standards within its
Frameworx program, the most interested initiatives for UniverSelf goals are the Shared Information/Data
Model (SID), the Multi-Technology Operations Systems Interface (MTOSI) and the enhanced Telecom
Operations Map (eTOM).

The SID aims at providing an information reference model and common vocabulary, addressing both the
business and systems perspectives, in order to enable an end-to-end service management. The UMF
information model was defined using the SID patterns, allowing information sharing across different layers,
administrative domains and network segments. Regarding NEM, as managed element by the UMF blocks, was
modelled as new class that is inheriting from the root class within the SID.

The MTOSI is a standardized (XML-based) interface between Operations Systems (0S-to-0S), covering also, as a
special case, the Network Management System-to-Element Management System communications (NMS-to-
EMS). In this context, MTOSI can be utilized for the interfaces among core UMF blocks and with other legacy
systems.

The eTOM provides a multi-layered view, or hierarchical catalogue, of the main business processes in the
telecommunication industry. The eTOM was utilized for several aspects in UMF work, e.g. the abstracting three
levels for policy refinement. Generally, bringing autonomics through the UMF core will shape the way eTOM
operations are realized and maintained.

Consequently, UniverSelf can take part in the discussions of all the relevant groups/initiatives, contributing
with the research outcomes (for example with addition of new elements in policy models of TMF Policy
Information Exchange group). Moreover, TMF has recently started an ontology program with the aim to
explore whether ontological techniques could help to reduce the complexity of and managing and maintaining
the Frameworks, their evolution and application. This program will provide OWL definitions for eTOM, SID,
linkage between TMF frameworks using ontology and so federation of information, machine readable format
of data for reasoning and inference, and as such it is in alignment to the model/functionalities extensions that
are developed in the context of UniverSelf.

3rd Generation Partnership Project (3GPP)

3GPP works on a variety of subjects related to radio, core network and service architecture, comprising radio
interface, architectures and protocols, strategies of radio resource management, SONs, services, features,
management framework and requirements for 3G. Particularly, SON, as part of the 3GPP LTE [31], provides an
autonomic management framework for reducing traditional high operational and capital expenditures during
the entire network lifecycle. Coordination aspect has become part of the 3GPP standardization agenda in
capturing the need to coordinate different SON functions and in particular to prevent or resolve conflict
functions i.e. when two or more SON functions try to change the same network configuration parameter or to

FP7-UniverSelf / Grant no. 257513 92

D2.2 — UMF specifications: Release 2

prevent or resolve negative influences between SON functions. UniverSelf can contribute to 3GPP SON related
work with its own development of SON coordination function (developed in the context of one of the project
use cases).

Next Generation Mobile Networks (NGMN)

The Next Generation Mobile Networks (NGMN) alliance aims at supporting relevant standardization groups,
such as 3GPP and TM Forum, by providing recommendations, requirements and use cases (among other
actions). In this context, the Next Generation Converged Operations Requirements (NGCOR)[32] (see section
7), which is a continuation of the projects SON and NGMN Top OPerational Efficiency (OPE) Recommendations
and worked in collaboration with TM Forum and 3GPP, aims at describing requirements for converged
operations for wireline and wireless networks, providing an significant opportunity for UniverSelf respective
contribution, based on the corresponding research outcomes.

International Telecommunication Union - Telecommunication (ITU-T)

ITU-T produces standards for telecommunications, services and internet in the form of Recommendations
developed by Study Groups (SG). The most relevant group to UniverSelf work is SG13, which established pre-
standardization “Focus Group on Future Networks (FG-FN)” to share discussions on and ensure global common
understanding about FNs. FG successfully completed its work in December 2010. UniverSelf/UMF work has
already influenced this group and has the opportunity to contribute to the ongoing detailed specification and
standardization in the areas of in-network management and virtualization in FNs, as captured by
Recommendations ITU-T Y.3001 "Future Networks: Objectives and Design Goals" and ITU-T Y.3011 "New
Framework of network virtualization for Future Networks" [33], respectively.

Internet Research Task Force - Next Generation Mobile Networks (IRTF-NMRG)

The Internet Research Task Force (IRTF) is a major contributor to emerging IETF standards that led to the
evolution of the management architectures, models and protocols of the future Internet. Among the existing
research groups, the Network Management Research Group (NMRG) is of particular interest for UniverSelf.

The NMRG focuses on higher-layer management services that interface with the current Internet management
framework, aiming at identification and documentation of respective requirements, specification of suitable
solutions, and proof-ness via prototype implementations, tested in large-scale real-world environments. In this
context, UniverSelf can promote its achievements and facilitate their acceptance within the IETF community
e.g. for addressing the coupling of self-management features with IETF based protocols and practices. The
Internet Draft "A framework for Autonomic Networking” [34] exhibits great commonalities to UMF e.g. in its
reference to discovery (knowledge), intent (policies), abstraction levels/autonomic reporting (governance),
decentralisation and Distribution/Modularity (NEMs), Life Cycle Support (NEM lifecycle), hence it can provide
an opportunity, but also inspiration for contributing elements of UMF into IETF.

FP7-UniverSelf / Grant no. 257513 93

D2.2 — UMF specifications: Release 2

\
UMI}erloyment
A3 N aspects P
\ N \ D;tglEIements
N \ P PR _-
Functienal Blocks & P - _-
B ~
- intetfaces \ 7 Opegatibns Scendrios
e N \ 4 P -
~ \ 7 - -
Use Cases & S < \ / P -
requirements™ ~ N 7 -~
~ ~ \ ' - -
~ -
~ N -
~ Phe
o UNIVERSELF
) ~ -
° O =~
e UI\/IF. -o)
_ - [X 1 hafN Management in an
- / N autonomic manner
- \ S~
In-network-ntanagement / N
— —ahd virtualization in / \
-
- Future Networks / S N
! \
/ (N
/ N -
UMF elgments SON Caeprdination
/ frameWo\rk
/ N
N

/
/

Figure 35. Standardization opportunities for UMF/ UniverSelf.

FP7-UniverSelf / Grant no. 257513 94

D2.2 — UMF specifications: Release 2

6 UMF in practice

Use Case 6 is an illustrative example of how UMF is used in practice. According to the scenario, a network
operator owns a multi-technology and multi-vendor infrastructure, on top of which he provides a set of
applications. The management of both the wireless and core segments of his networks is based on UMF
compliant entities, while the operator’s interaction with the system is done by using the provided Human to
Network (H2N) Graphical User Interface (GUI). This H2N GUI is a powerful and easy to use tool that on one
hand enables the operator to model the characteristics of the application, the users or the infrastructure that
comprise the service provision environment. And on the other hand, it allows the operator to govern the
underlying resources by specifying associations between applications, user classes and quality levels, defining
policy rules and registering service provision requests.

More specifically, in UC6 it is assumed that there is a Video Conference application that is available in three
quality levels, identified in a high level manner by their names, namely Gold, Silver and Basic. In the same
notion, there are also three classes of users with the same names mentioned before. The service and all the
relevant details are described in the so called Service Manifest. One of the important information included
there is the allowed combinations of user classes and quality levels. In UC6, the users of the Gold class shall
receive the service at the highest quality level (Gold). On the other hand, the users of the Silver class can get
the service at either the silver or the basic quality level. All these are communicated to the system through the
H2N tool in the form of policies and they are stored in the appropriate repositories.

OPER;|4 TOR
NEM Registry KNOW
/Gov 1

H 1t m

Profiles
&Models

/coo;zp \
> NEM
\ Registry

ORCH
A e 14
—| 7.p Information Collection
Enforcement and Dissemination
\ function / /
16
16
0a
v
LLE
(KB NEM) J "
12 CORE - Routing
12 Optimization
Optimization NEM
NEM 12
Wireless segment Wireline segment

Figure 36. Example based on UC6.

At some point the operator is informed by the sales department, that there will be a press conference in a
hotel in the city centre and thus an additional traffic load is expected at this area in the corresponding time
zone. The estimation is that 20 Gold users and 15 Silver users of the Video Conference application will be active
concurrently, in excess of the usual load. This information (High Level Parameters) is inserted by the operator
into the H2N tool (step 1), along with the high level goal of energy efficiency (High Level Objective), based on
that a Business Policy is built by the Policy Derivation and Management (PDM) UMF Core mechanism, which in
this case has the form of service request (step 2).

FP7-UniverSelf / Grant no. 257513 95

D2.2 — UMF specifications: Release 2

Table 10. Abbreviations

Acronym Meaning

H2N Human to Network interface

IFEO Information Flow Establishment & Optimization
IPKP Information Processing and Knowledge Production
ISI Information Storage and Indexing

LLE Load Level Estimation

OCA Optimization and Conflict Avoidance

ORCH Orchestration

PDM Policy Derivation and Management

PDM consists of three levels, the Business, the Service and the NEM level (see section 3.2.2). When the request
arrives at the service level of PDM, the first task it performs is the translation of the business level entry
request that is received into service level terms (step 3). More specifically, it interacts with the policy
repository, the profiles and models repository and it retrieves the quality parameters and the related values or
thresholds that should be respected according to the user class (step 4). The Check Feasibility & Optimize
operation of PDM analyses the current status of the network and the available resources, as well as the
situation (step 5) that will arise after the appearance of this extra load and if there will be significant change in
the network conditions. If it doesn’t diagnose any potential problems, it forwards the request to the next level
of PDM (step 6), so that the appropriate configurations will be derived in order to serve all the users at the
appropriate quality levels.

The NEM level of PDM first retrieves information about the infrastructure existing in the concerned
geographical area, and then it requests from the Information Collection and Dissemination (ICD) entity, any
previous knowledge on the load level of the available base stations (step 7). The underlying core segment
routers are not taken into account at this stage. Specifically in UC6, the request is about a hotel located in the
City Center area, where there are 3 LTE base stations, BS 16, BS 17 and BS 18.

ICD seamlessly retrieves this information from Information Storage and Indexing (ISI) (step 8). This information
may be already stored in the KNOW block. In this case, the knowledge has been sent towards the ICD in order
to be stored, i.e., in our example the load level estimation (LLE) NEM has already produced the answer with
respect to the load level that will be reached in a specific RAN element at the specific time zone of the request
and has already sent it to the ICD sub-block of KNOW block (step 0a) which has seamlessly stored it in ISI (step
0b). If there are two NEMs building the same knowledge, there are two records in the same or different
databases and the selection will be done by IFEO through a context aware policy and accuracy objectives (step
Oc). In case the information is not available in ISI, then ICD is advised by the NEM registry which NEMs can
produce it and triggers the most appropriate (according to the request) for collecting the required information
(step 0d). Eventually, ICD sends the retrieved or collected information to the NEM level PDM (step 9).

The Check Feasibility & Optimize operation of PDM in NEM level is then triggered (step 10) in order to decide
what kind of optimization should be done for the network to accommodate the requests, namely in this case,
the most appropriate solution for handling the new network conditions that will appear due to the additional
traffic load. The solution involves a subset of the underlying infrastructure in the area and it mainly concerns
the NEMs that manage this infrastructure and are most suitable to elaborate on the solution’s details. In other
words, the output of the NEM level PDM is a number of policies to specific NEMs, defining at least the portion
of traffic that each NEM should undertake and potentially further instructions on the methodology or the
objective.

In the examined use case, BS 18 is expected to be anyway highly loaded at that time, so NEM level PDM
doesn’t assign any more traffic load to it. It chooses to split the additional users as equally as possible to BS 16
and BS 17. So it prepares the corresponding policy and informs the NEMs that are managing these two base
stations, namely RAN_NEM_16 and RAN_NEM_17 respectively (step 11). The CORE_NEMs that are supporting
them will be notified as well, but there is no need for an explicit action from NEM level PDM about that. In
parallel, NEM level PDM passes to the NEMs, through the Enforcement Function, the general objective set by
the operator at the beginning about the energy efficiency.

FP7-UniverSelf / Grant no. 257513 96

D2.2 — UMF specifications: Release 2

Table 11 UMF CORE Blocks and Functions

Block

Function

Objective

GOV

H2N

Expresses the operator’s business goals (High Level
Objectives) and requests

NEM management

Enables the control of the deployed NEMs and
the management of their lifecycle (including the
activation and deactivation of the autonomic
functionality).

PDM Service Level

Analyses events and translates service
requirements to network conditions

PDM NEM Level

Identifies potential solutions for operator’s
demands/request

KNOW

ICD

Function responsible for activities related to
information collection, update, retrieval,
dissemination and querying

ISI

A logical construct representing a distributed
repository for registering NEMs, indexing (and
optionally storing) information/knowledge

IPKP

Consists of two components, Information
Aggregation (IA) and Knowledge Production (KP).
The IA component is a distributed structure that
applies aggregation functions to the collected
data/information. KP component handles and
produces globally-scoped knowledge

IFEO

Regulates information flow based on the current
state and the locations of the NEMs producing
information

COORD

ORCH

This function is responsible to address
orchestration issues of NEMs. This functionality
addresses issues such as ordering the sequence
of NEMs in a way that is needed to resolve
dependencies in inter-NEM relations based on
service/scenario policies from the operator and
corresponding input/output and timing
relationships, as well as to maintain the proper
workflow

OCA

This function is responsible for guiding the re-
computation of the resource allocation to the
NEMs in a way that optimizes the global
system’s utility, capturing even the end-to-end
optimization of different segments and for the
detection and avoidance of conflicts between
NEMs

The message is sent to the NEMs through a Send NEM Mandate and then, each NEM registers to the NEM
registries of GOV, KNOW and COORD (step 12). The ORCH inside COORD identifies that a change in the COORD
NEM registry is observed by a change in the instance descriptions of the already registered NEMs of BS 16 and
BS 17 (step 13). Thereupon, ORCH triggers the OCA to solve the joint optimization problem between the NEMs
of RAN and Core segments, in order to resolve possible incompatibilities between the offered QoS from RAN’s
NEMs and core segment’s NEM and to achieve coherence (step 14). Then, OCA chooses the coordination
mechanism, checks the feasibility of the mechanism, set the parameters for the selected mechanism and

FP7-UniverSelf / Grant no. 257513

97

D2.2 — UMF specifications: Release 2

produce the NEMs control policy (step 15) for the NEMs that will need to be controlled by the selected
coordination mechanism i.e. the NEMs of RAN_NEM_16 and RAN_NEM_17, as well as the core segment’s NEM.
The dependency between these NEMs (of RAN and core) is instructed by the ORCH constraints. After a check
on whether the mechanism can operate as intended and whether the NEMs can enforce the instructions of the
NEM control policy, the NEM control policies are sent to the RAN NEM_16 and RAN_NEM_17, as well as to the
core segment’s NEM (step 16).

In addition to the control policies, CORE NEM is informed about the specific traffic load that the base stations
requested. For instance, in our use case, the control policies indicate that there should be an energy efficient
network operation, while BS 16 and BS 17 requested the accommodation of aggregated traffic of about
15Mbps and 20Mbps respectively. Therefore, taking into account this information, CORE NEM evaluates
network’s status (e.g. utilization of links, consumed energy of activated elements) in order to find the optimal
routing configuration. From the evaluation process, it recognizes that traffic is already routed from Video
Server 1 towards BS 17 through the links that connect Video Server 1 with LSR 1 and then to LSR 5, LSR 8, LSR
12 and finally to BS 17. Also, traffic is routed from Video Server 5 towards BS18 through the links that connect
Video Server 5 with LSR3 and then to LSR6, LSR10, LSR 14 and finally to BS 18. With these currently activated
network elements, the most energy efficient solution is to preserve Video Server 1 as the traffic generator and
reuse the already established path between Video Server 1 and BS 17 for the new traffic request of BS 17.
Regarding the request of BS 16, the optimal solution will be to route traffic generated from Video Server 1
towards the path that traverses routers LSR1, LSR5, LSR8, LSR11 and LSR13. This path activates minimum
number of unutilized links, resulting in minimum increase in the consumed energy of the network. Finally, this
decision is enforced to the network by sending the appropriate commands to the ingress routers.

Table 12 UMF NEMs

ICIC (RAN Optimization NEM)

The problem addressed by the ICIC NEM is to find the appropriate OFDM resource (subcarriers (SCs) or physical
resource blocks (PRBs)) allocation in the target cell (i.e. the cell that this NEM is applied), in order to minimize
the interference caused at the target cell's users, by taking into account the target cell context (load, radio
conditions etc.), the amount of available resources and the context of the neighbouring cells (acquired by
Relative Narrowband Transmit Power (RNTP) signalling) in downlink LTE networks.

LLE (Knowledge Building NEM)

The purpose of this NEM is to provide estimations to other mechanisms regarding traffic load for multiple RAN
elements, in specific time periods. Such a goal is achieved through online, unsupervised machine learning
schemes. Monitored data are fed into the NEM (by some monitoring NEM) in order to build a knowledge base
(which consists of multiple Self-Organizing Maps) containing past experience on traffic load through time for
the specific network element.

CORE - Routing Optimization NEM

This NEM provides a solution to the problem of routing optimization with respect to different operator's
policies. Our solution is based on a heuristic algorithm that evaluates network’s status and finds the optimal
routing configuration, exploiting the capability of splitting traffic and forwarding it through different multiple
MPLS paths, when this is needed. Main objectives that have been examined are load balancing and energy
efficiency. Load balancing is achieved through splitting traffic, while energy efficiency is achieved through the
aggregation of traffic into minimum number of links and deactivation of unused network elements.
Furthermore, our solution comprises two important features, monitoring network and informing/alerting other
NEMs.

FP7-UniverSelf / Grant no. 257513 98

D2.2 — UMF specifications: Release 2

Table 13 City Center Infrastructure

Wireless Segment Corresponding Wired Segment Corresponding
RAN NEM CORE NEM
LTE BS 16 RAN_NEM_16 LSR13 CORE_NEM
LTEBS 17 RAN_NEM_17 LSR12 CORE_NEM
LTE BS 18 RAN_NEM_18 LSR14 CORE_NEM
LTE BS 19 RAN_NEM_19 LSR13 CORE_NEM
LTE BS 38 RAN_NEM_38 LSR13 CORE_NEM

In the city area, there are 3 LTE base stations, BS 16, BS 17, BS 18 and 14 routers (Label Switch Routers), LSR1-
LSR14. Core network has a typical IP/MPLS architecture. Traffic is generated and forwarded, utilizing MPLS
paths.

CORE NEM

= (V]
"““:\ ?\ / b MH&
o RAN_NEMLIY

\ ? a1 \
\/A :

i =

VidasSarvard LR = / SRy Basaftationis RAN_NEM LIS

=
= .{ @’ H
;]
WidacSarvard BasaStation RAN_NEM_20
=y
E=H =]
o @ W
; {
WidaoSanvars BamStatinnld LT

Lm0

Figure 37. Core Network Topology.

FP7-UniverSelf / Grant no. 257513 99

D2.2 — UMF specifications: Release 2

7 Requirements Analysis

The overall UMF requirements list and design goals are derived from the Description of Work (DoW), individual
project partners’ expertise, as well as the general vision and research directions for Future Networks, Service
Oriented Computing and Networking, and Future Internet.

The UMF requirements list has three axes (see Figure 38): a “bottom-up requirements” synonymous of 6 use
case problem specific requirements addressing operators’ day-to-day problems identified in live networks and
on existing service/network architectures; a “top-down requirements” synonymous of high-level functions,
functional blocks and interfaces and “vertical requirements” synonymous of a reposition of TMN FCAPS
towards the management functions of Future Networks.

UMF Top-down
Requirements

Figure 38. UMF Axes of Requirements

The first approach “bottom-up requirements” aims at addressing the set of requirements elicited for 6 use
cases defined and developed so far within deliverable D4.1 — Synthesis of Use Case Requirements, Release 1
(WP4) and deliverable D4.2 - Synthesis of Use Case Requirements, Release 2 (WP4). The second approach “top-
down requirements” aims at addressing global management characteristics across many networking and
service domains and they were developed so far within deliverable D2.1 — Unified Management Framework,
Release 1 (WP2). The third approach “vertical requirements” aims at elaborating the expected new
management functionality of future networks developed so far within deliverable D2.1 — Unified Management
Framework, Release 1 (WP2). The requirements together as a set, and not necessarily per individual
requirement, describe what distinguishes UniverSelf from earlier network and service management
technologies and what the UniverSelf project intends to design and deliver.

The following is a synthesis of the main UMF requirements and characteristics (see Figure 39).

— 3-/_,,‘ N « Service
~._ . Oriented
\ Qharacterlstlcs

Autonomicity Coordination, \ \

/ Requirements Requlremenis

Knowledge
Requirements

Figure 39. UMF Requirements Synthesis

FP7-UniverSelf / Grant no. 257513 100

D2.2 — UMF specifications: Release 2

Unification and Federation

The UMF design aims at an integration and unification of these three axes supporting management operations
and functionality by the means of a highly distributed functional architecture. UMF must ensure that multiple
diverse management systems implemented upon different autonomic architectures will be able to interoperate
and federate. It will also guarantee that autonomic functions may be implemented independently of the
architecture chosen for the management system. As such UMF is envisaged as a multi-faceted unification: a
unified and evolvable framework constituting a cross-technology (wireless and wireline) and common
abstraction/substrate for supporting the management of both networks and services.

Management processes and functions can be implemented as external and separated, or inherent
management capabilities of the network or services. The main objective is the design of UMF management
functions that are located in or close to the network elements and services to be managed, in most of the cases
co-located on the same nodes e.g. embedding management capabilities in the network. The main benefit of
the resulting architecture is the inherent support for self-management features, integral automation and
different degree of autonomic capabilities, easier use of management tools and empowering the network with
inbuilt cognition and intelligence. Additional benefits include reduction and optimisation in the amount of
external management interactions, which is key to the minimization of manual interaction and the sustaining
of manageability of large networked systems and moving from a managed object paradigm to one of
management by objective. Key supplementary benefits include also the unification of intelligence that allows
the system to govern its own behaviour in terms of network and service management and unification of
network orchestration that enable cooperation and interworking of closed control loops specific to different
management functions and operations.

UMF Decomposition and Extensibility

VTS

The analysis of all requirements, “bottom-up”, “top-down” and “vertical” requirements, have resulted in the
definition of a set of UMF functional blocks and interfaces that consider both services and networks and exhibit
the flexibility to accommodate mixed networking scenarios spanning both wireline and wireless technologies.
In addition the resulting UMF functional blocks are grouped in Core functions, which are supporting all UMF
functions, and Network Empowerment/intelligence functions which are acting and changing groups of network,
computation and storage physical and virtual resources. Each UMF Network Intelligence functions would
encapsulate at least one self-x algorithms/methods and it will host /deployed by the network in case of in-
bound management) or by TMN/TMF Network Management Station (NMS) / Operations Systems (OS) in case
of out-of-bound management). Such Network Intelligence functions retrieve data from network/service
elements and agents for the purpose of monitoring and controlling networked devices and make changes to
the following managed physical and virtual entities:

e Services: Large number of ICT and Telecom services offered by the network operator or different
service providers needs to be managed (e.g., management of the mapping of service components into
executable services on the network environments, deployment and activation of services, services
run, the service profile/requirements, manage the e2e performance of the services, assurance
management, charging/accounting management, etc.)

e Networks: Different technological (e.g., wired, wireless), topological (e.g., enterprise, access, core) and
administrative domains need to be managed (i.e., enforce policies, configure components, monitor
management data, etc.)

e Resources: The per node computational resources (e.g., buffers, memory, CPU), network resources
(e.g., spectrum, radio channels, network interfaces, etc.) as well as virtual resources, which are
dynamically created groups of physical resources need to be managed in an autonomous or
cooperative way.

e Domains: A grouping of resources and managed objects with uniform set of policies (e.g.
administrative domain, access-network domain, core network domain, virtual network domain,
service domain, etc.).

e Managed Things: S/W objects, which are part of management applications/services, Virtual Machines
representing service components and virtual routers, network attachments, domains, smart objects /
Internet of things.

FP7-UniverSelf / Grant no. 257513 101

D2.2 — UMF specifications: Release 2

The Core functions are mainly derived from the top-down requirements and they are further grouped in
Governance, Knowledge and Coordination functional blocks capitalising on previous autonomic architecture
research as a coherent set of autonomic management functionalities that can interwork in a scalable manner.

The eco-system of Network Intelligence functions — the Network Empowerment Mechanisms (NEMs) - include
the functions resolving operators’ day-to-day problems identified in live existing service/network of the
identified 6 operator’s existing day-to-day use cases and the supplementary functions of managing future
networks.

UMF can be extended mainly via additional NEMs or through modification of existing NEM functionality and
characteristics, while minimizing impact to existing system functions. The degree of extensibility covers
Plug_and_Play/Unplug_and_Play approaches, on demand deployment of new management functionality and
dynamic programmability of management functions.

Service Orientation

Much related to unification above is the service orientation of UMF. UMF will be service oriented and will offer
a service view instead of the traditional resource view. This means that UMF should cover explicitly both
network and services aspects in a unified manner and facilitate shifting and convergence towards “Everything
as a managed Service”, which also includes “Network as a Service” (e.g. management of the integration of
network and service aspects).

Autonomicity and Self-x

Autonomicity/automation and self-x networking are of topmost importance for UniverSelf and they should be
facilitated by and demonstrated through UMF. A number of coordinated, autonomic, closed control loops per
management function or group of management functions will need to be specified. In particular, UMF should
provide a framework for understanding the behaviour of active self-x entities. It should be also able to assess
their performance and when needed i.e. at ideal points in time, to re-optimize individual management
processes. This last might also designate the need to satisfy extensibility (change of management functionality)
requirements. That is, UMF must provide the enablers for activating new management functionality on
demand in a plug-and-play / unplug-and-play fashion and programmatically, but also the capability to adapt the
information flow and interactions between the functions of the UMF to face new system or operational
requirements.

Governance

The prominent role of governance in UniverSelf calls for explicit design of its management functionality and
associated interfaces within UMF. First of all, the UMF design should designate and facilitate the development
of a privileged, powerful and evolved human to network interface that will be used by the human operator for
expressing their business goals and requests, thus shifting from network management to network governance.
At the same time, UMF should provide a policy-based framework for translating those business level
goals/requests (highest level policies) to low level policies and configuration commands. In general, UMF must
facilitate high-level dialogues between self-managed networks and multiple human network operators. They
will ensure that all well-formed queries to the network are answered in a pertinent way and also that every
well-formed goal injected to a network is either enforced completely and instantly or its delay/modifications
are negotiated per rules instantiated. In the opposite direction, UMF must take care so that every context to
continue self-managed operation or realistic danger of that will be reported to humans with pertinent details
of the situation. Having a global coarse view of the network components and services, governance participates
in the overall evaluation on the performance of services/network nodes/domains etc.

Coordination

In supporting autonomicity above, UMF should also provide a framework for the coordination and
orchestration of the newly introduced self-x managing and managed entities. This can be based both on human
control/directives (i.e. governance) and explicit functionality destined to this task. Additionally, this
introduction of autonomic/self-x network capabilities into a network and services might cause instabilities, thus

FP7-UniverSelf / Grant no. 257513 102

D2.2 — UMF specifications: Release 2

jeopardizing performances and integrity. Therefore, UMF must provide the means to monitor, detect/predict,
resolve and manage external/internal disturbances/dynamics in networks and services.

Knowledge

In supporting autonomicity above a unified Information and knowledge management system is envisaged. It is
a critical part of the UMF since it plays the role of information & knowledge collection, aggregation,
storage/registry, knowledge production, distribution and optimisation across all UMF functions and functional
blocks.

New Management Functions specific to Future Networks

UMF will capitalize both on research done in autonomic networking and demonstrate its applicability to
industry standards, whereas at the same time it will be forward looking, enabling future research and
engineering to build on UniverSelf outcomes. The top level requirements regarding management of future
networks that follow, were actually identified by ITU-T SG13 “Focus Group on Future Networks (FG-FN)” and
are expected to play quite a role in the finalized UMF design and in demonstrating its future-proofing. New
management functions envisaged for Future networks are (see Figure 40): |. Service awareness management
functions including management of service diversity, functional flexibility and programmability, management of
virtualisation of resources, in-network management enablers, management of mobility and management of
reliability; II. Data awareness management functions including data and context access and data identification;
lll. Environmental awareness management functions including energy management and multi-objectives
optimisation; IV Social and economic management functions including management of service universalization
and economic incentives.

Data
awareness

Service Divers

Data Access

Identification

Energy Consumption Service Universalization
Optimization Economic Incentives

Figure 40. New Management Functionality for Future Networks

FP7-UniverSelf / Grant no. 257513 103

D2.2 — UMF specifications: Release 2

8 Conclusion

Deliverable D2.2 “UMF Specifications — Release 2” provides a first complete functional specification of the
UMF, including the detailed specification of the UMF core and the relevant interfaces, the possible mechanisms
to support the main functions of the core blocks, and the demonstration of the realization potentiality of UMF.

In this context, a set of definitions for the NEMs were introduced and used for the full description of the NEM’s
lifecycle. For the core blocks, the mandatory and optional functional blocks were determined. Specifically, the
expected role, the behaviour and the functions of each core block were described, and the structure and the
relevant interfaces between the functions of each component were determined. The related information was
prescribed, comprising the operation description, the necessary constraints, list of input and output data, as
well as the list of non-functional requirements. The interfaces between the three core components were
described and possible mechanisms to support the main functions of the core blocks and achieve their
objectives were identified. Furthermore, activity diagrams that provide a dynamic view of UMF operations
were defined.

The UMF information model was defined by refining and extending the TMF information framework (i.e. SID)
patterns. The classes, attributes and relationships of the UMF information model allow information sharing
across different layers, administrative domains and network segments. Moreover, the UMF capture for the
UC6: Operator-governed, end-to-end, autonomic, joint network and service management, featured the
potentiality of realization of UMF.

The UMF specification will be refined, updated and consolidated as the research highlights and clarifies the
issues, and feedback from the integration of the network empowerment solutions (WP3, including already first
examples in deliverables D3.5, D3.6/D3.7 and the upcoming D3.8 where the NEMs are examined not only in a
stand-alone way, but also as part of typical interactions involving the UMF capabilities) and
feasibility/implementation of the UMF (WP4, including already first examples with the release of the two first
project prototypes (deliverables D44 and D48 along with their corresponding leaflets (D45/D49 respectively).
The UMF aspects are also taken into consideration in the deliverable D46 which reports on the deployment
assessment of the project solutions) will continue and be published as Deliverable D2.4 “UMF Design — Release
3”. This final version of the UMF will accommodate requirements from all use cases handled by the project and
will incorporate corresponding network empowerment solutions for Future Networks as applicable to the
overall networking infrastructure, spanning wireless and wireline, as well as access, core and service segments.

Capitalizing on this second UMF specification, next steps include: a) detailed specification of the UMF core
mechanisms, b) accommodation of further, future use cases as a means to prove a great level of reusability of
functional blocks and/or interfaces, c) validation activities, d) standardization activities, and e) instantiation of
UMF mechanisms within exemplary use cases, e) system architecture assurances that would make UMF ready
for deployment with a migration path.

As the final specification of the UMF has to enable standardization and certification, in order to ensure industry
adoption, the UMF standardization activities will concentrate significant effort. The UMF standardization
strategy comprises activities related, for example, to 3GPP subjects (e.g. architecture, features and
requirements for SON mechanisms and SON coordination, specifications of measurements related to SON,
OAM aspects and use cases related to SON, system architecture and service requirements for future mobile
networks, as well as system enhancements for autonomic load balancing of core network gateway and nodes
and for autonomic energy saving solutions), to Next Generation Management Networks — NGMN (e.g. use
cases and definition of OAM requirements), to ETSI AFI Industry Specification Group (e.g. scenarios, use cases
and requirements for Autonomic/Self-Managing Future Internet) and ITU-T Future Networks Group.

FP7-UniverSelf / Grant no. 257513 104

D2.2 — UMF specifications: Release 2

9 References

[1] Strassner, J.; Yan Liu; Jiang, M.; Jing Zhang; van der Meer, S.; O Foghlu, M.; Fahy, C.; Donnelly, W.; ,
"Modelling Context for Autonomic Networking," Network Operations and Management Symposium
Workshops, 2008. NOMS Workshops 2008. IEEE , vol.,, no., pp.299-308, 7-11 April 2008,
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4509963&isnumber=4509916

[2] Steven Davy, Brendan Jennings, John Strassner. The policy continuum—Policy authoring and conflict
analysis. Computer Communications 31 (2008) 2981-2995.

[3] Guerrero, A., Villagra, V.A., de Vergara, J.E.L., Sanchez-Macian, A., Berrocal, J., “Ontology based Policy
Refinement Using SWRL Rules for Management Information Definitions in OWL” Proc. 17th IFIP/IEEE
InternationalWorkshop on Distributed Systems, Operations and Management (DSOM), Dublin, Ireland
(October 2006).

[4] Loépez de Vergara, A. Guerrero, V.A. Villagra, J. Berrocal, “Ontology Based Network Management: Study
Cases and Lessons Learned”, Computer Science Journal of Network and Systems Management, Volume 17,
Number 3, pp. 234-254, 2009.

[5] J. Strassner. “Policy-based Network Management: Solutions for the Next Generation”. Morgan-Kaufman
Publishers. ISBN 1-55-859-1, Sep 2003.

[6] http://www.w3.org/Submission/SWRL/

[71 Dunlop N., Indulska J. Raymond K. A., “Methods for Conflict Resolution in Policy-Based Management
Systems”, in the Proceedings of the 7th International Conference on Enterprise Distributed Object
Computing (EDOC 2003), Brisbane, Australia, 2003.

[8] Dunlop N., Indulska J., Raymond K. A., “Dynamic Policy Model for Large Evolving Enterprises”, Proceedings
of the Fifth International Conference on Enterprise Distributed Object Computing (EDOC 2001), Seattle,
Washington, USA, September, 2001.

[9] Dunlop N., “Dynamic Policy-Based Management in Open Distributed Environments”, Ph.D. Thesis,
University of Queensland, Brisbane, Australia, September, 2002.

[10] Dunlop N., Indulska J., Raymond K. A., “A Formal Specification of Conflicts in Dynamic Policy-Based
Management Systems”, DSTC Technical Report, CRC for Enterprise Distributed Systems, University of
Queensland, August, 2001.

[11] Dunlop N., Indulska J., Raymond K. A., “Dynamic Conflict Detection for Large Evolving Enterprises”,
Proceedings of the Sixth International Conference on Enterprise Distributed Object Computing (EDOC
2002), Lausanne, Switzerland, September, 2002.

[12] Charalambides M., Pavlou G., et. al, “Policy Conflict Analysis for DiffServ Quality of Service Management”,
IEEE Transactions on Network and Service Management, vol.6, no.1, March 2009.

[13] Kamoda H., Yamaoka M., Matsuda S., Broda K. and Sloman M. 2005, “Policy conflict analysis using free
variable tableaux for access control in web services environments”, in Proceedings of the Policy
Management for the Web Workshop at the 14th International World Wide Web Conference (WWW).

[14] SLA Management Handbook — Concepts and Principles, Release 2.5, Telemanagement Forum, July 2005.

[15] Yan Lindsay Sun, Wei Yu, Zhu Han, Liu, K.J.R., Information Theoretic Framework of Trust Modeling and
Evaluation for Ad Hoc Networks, Journal on Selected Areas in Communications, IEEE, Feb. 2006, Volume:
24 Issue:2, p: 305 —317.

[16] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.

[17] L. Mamatas, S. Clayman, M. Charalambides, A. Galis and G. Pavlou, "Towards an Information Management
Overlay for Emerging Networks", 12th IEEE/IFIP Network Operations and Management Symposium (NOMS
2010), 19-23 April 2010, Osaka, Japan.

[18] Y. Myoung Ko, Epidemic-Based Information Dissemination in Wireless Mobile Sensor Networks, IEEE/ACM
Transactions on Networking, Vol. 18, No. 6, December 2010.

[19] G. Gehlen, F. Aijaz, M. Sajjad, B. Walke, A Rule Based Publish/Subscribe Context Dissemination
Middleware, IEEE WCNC, Wireless Communications and Networking Conference, 2007.

FP7-UniverSelf / Grant no. 257513 105

D2.2 — UMF specifications: Release 2

[20] C. Anagnostopoulos, S. Hadjiefthymiades and E. Zervas, Information Dissemination between Mobile Nodes
for Collaborative Context Awareness, IEEE Transactions on Mobile Computing, Vol.10, No.12, December
2011.

[21] C. Intanagonwiwat, R. Govindan and D. Estrin, Directed diffusion: A scalable and robust communication
paradigm for sensor networks, in Proceedings of the Sixth Annual International Conference on Mobile
Computing and Networking (MobiCOM '00), August 2000, Boston, Massachussetts.

[22] G. Gehlen, F. Aijaz, M. Sajjad, B. Walke, A Rule Based Publish/Subscribe Context Dissemination
Middleware, IEEE WCNC, Wireless Communications and Networking Conference, 2007.

[23] F. S. Correa da Silva, et al, On the insufficiency of ontologies: problems in knowledge sharing and
alternative solutions, Elsevier, Knowledge-Based Systems 15 (2002) 147-167.,

[24] R. G. Clegg, S. Clayman, G. Pavlou, L. Mamatas and A. Galis, "On the selection of management/monitoring
nodes in highly dynamic networks", IEEE Transactions on Computing, 2012, to appear.

[25] S. Clayman, R. G. Clegg, L. Mamatas, G. Pavlou and A. Galis, "Monitoring, Aggregation and Filtering for
Efficient Management of Virtual Networks", 7th International Conference on Network and Service
Management CNSM 2011.,

[26] S. Clayman, A. Galis, L. Mamatas, "Monitoring Virtual Networks with Lattice", 12th IEEE/IFIP NOMS 2010 -
International Workshop on Management of the Future Internet (ManFI 2010), Osaka, Japan, 2010.,

[27] L. Mamatas, S. Clayman, M. Charalambides, A. Galis and G. Pavlou, "Towards an Information Management
Overlay for Emerging Networks", 12th IEEE/IFIP Network Operations and Management Symposium (NOMS
2010), 19-23 April 2010, Osaka, Japan.

[28] http://wiki.univerself-project.eu/files/2614-3229

[29] M.Wadczak, T.B. Meriem, B.Radier, R.Chaparadza, K.Quinn, J. Kielthy, B.Lee, L.Ciavaglia, K.Tsagkaris,
S.Szott, A.Zafeiropoulos, A.Liakopoulos, A.Kousaridas, M.Duault, “Standardizing a reference model and
autonomic network architectures for the self-managing future internet”, IEEE Network, vol.25, 2011, pp.
50-56

[30] TeleManagement Forum (TMForum), http://www.tmforum.org/browse.aspx

[31] 3rd Generation Partnership Project (3GPP): http://www.3gpp.org/SON

[32] [Next Generation Converged Operations Requirements Phase 1", A Deliverable by the NGMN Alliance,
available at http://www.ngmn.org/uploads/media/NGCOR_Phase_1_Final_Deliverable.pdf

[33] http://www.itu.int/rec/T-REC-Y/en

[34] IETF Internet Draft: A Framework for Autonomic Networking, draft-behringer-autonomic-network-framework-00
available at: https://datatracker.ietf.org/doc/draft-behringer-autonomic-network-framework/

FP7-UniverSelf / Grant no. 257513 106

10 Abbreviations

3GPP
3GPP LTE
3GPP SAE
AFI

AP

API

BoF

BSS
CAPEX
DiffServ
DoW
E2E
EMS
eNodeB
ETSI
FG-FN
FMC
FTTH
GUI
GW
H2N
ICT

IEEE
IETF
IRTF
IMS

IP

OAM
OFDM
OFDMA
OPEX

D2.2 — UMF specifications: Release 2

3" Generation Partnership Project

3GPP Long Term Evolution

3GPP Service Architecture Evolution
Autonomic network engineering for the self-managing Future Internet
Access Point

Application Programming Interface
Birds-of-a-Feather

Business Support System

Capital Expenditures

Differentiated services

Description of Work

End-to-End

Element Management System

Evolved NodeB

European Telecommunications Standards Institute
Focus Group — Future Networks

Fix Mobile Convergence

Fibre To The Home

Graphical User Interface

Gateway

Human-to-Network

Information and Communication Technologies
Institute of Electrical and Electronics Engineers
Internet Engineering Task Force

Internet Research Task Force

IP Multimedia Subsystem

Internet Protocol

Internet Research Task Force

Information System

Information Technology

International Telecommunication Union
International Telecommunication Union — Telecommunications standardization sector
Key Performance Indicator

Learning-Capable Communication Networks
Large Enterprises

Label Switched Path

Long Term Evolution

LTE Advanced

Multi Protocol Label Switching

Network as a Service

Network Management Research Group
Network Management System

Operations Administration and Maintenance
Orthogonal Frequency-division Multiplexing
Orthogonal Frequency-Division Multiple Access

Operational Expenditures

FP7-UniverSelf / Grant no. 257513

107

D2.2 — UMF specifications: Release 2

0SS Operations Support System
PDN-GW Packet Data Network Gateway
QoE Quality of Experience

QoS Quality of Service

ROI Return of Investment

RAN Radio Access Network

RRM Radio Resource Management
SGW Serving Gateway

SME Small and Medium Enterprises
SLA Service Level Agreement

SON Self Organized Networks

TCO Total Cost of Ownership

TMF TeleManagement Forum

uc Use case

UMF Unified Management Framework
VolP VolP - Voice over IP

VPN Virtual Private Network

FP7-UniverSelf / Grant no. 257513 108

D2.2 — UMF specifications: Release 2

11 Definitions

Atomic NEM — NEM the internal functioning of which relies only on one equipment.

Composite NEM — NEM the internal functioning of which can rely on separated piece of software running on
different equipments.

Coordination block (COORD) — A core UMF block that aims to ensure the proper sequence in triggering of NEMs
and the conditions under which they will be invoked (i.e. produce their output), taking into account operator
service and scenario requirements and at the same time the needs for conflict avoidance, stability control and
joint optimization through the corresponding functions.

Functional requirement — It is a description of a function, or a feature of a system, or its components, capable
of solving a certain problem or replying to a certain need/request. The set of functional requirements present a
complete description of how a specific system will function, capturing every aspect of how it should work before
it is built, including information handling, computation handling, storage handling and connectivity handling.

Governance block (GOV) — A core UMF block that aims to give a human operator a mechanism for controlling
the network from a high level business point of view, that is, without the need of having deep technical
knowledge of the network.

Knowledge block (KNOW) — An infrastructure that uses and/or manipulates information and knowledge,
including information/knowledge flow optimization within the network.

Network Empowerment Mechanism (NEM) — A functional grouping of objective(s), context and method(s)
where “method” is a general procedure for solving a problem. A NEM is (a priori) implemented as a piece of
software that can be deployed in a network to enhance or simplify its control and management (e.g. take over
some operations). An intrinsic capability of a NEM is to be deployable and interoperable in a UMF context (in a
UMF-compliant network).

NEM class — it is a piece of software that contains the logic achieving a specific autonomic function. Such class is
deployed in a network running a UMF system and requires being instantiated on a set of concrete network
elements to effectively perform its autonomic function

NEM (class) instance — it allows performing a given autonomic function onto a given sub-set of a network. This
is achieved by binding the code of a NEM class to a set of identified network resources/equipments. This NEM
instance is identified by an instance ID and its unique interface with the UMF. This NEM instance at any given
time is handling a set of identified network resources (this set can evolve with time). Hence there may be
multiple instances of a given NEM class inside the same network e.qg. one per area). A NEM instance is created
by the UMF system it is being deployed in.

NEM instance description — it describes a given instance of a given NEM class. This description is issued by the
NEM instance towards UMF system, it is used for the registration of the NEM and it tells which information is
monitored and which actions are taken.

NEM instance description grammar — it is a subset of UMF specifications describing which information MUST
and MAY be provided by the NEM instance when starting (and when its settings are changed) so as to register
to the UMF system the: a) capabilities of this NEM instance regarding information/knowledge sharing, b)
requirements of this NEM instance regarding knowledge inputs and c) conflicts of this NEM instance with
already running NEM instances of any NEM class.

FP7-UniverSelf / Grant no. 257513 109

D2.2 — UMF specifications: Release 2

NEM mandate - it is issued by the UMF system to a NEM instance. This NEM Mandate is a set of instructions
telling which equipments MUST be handled by this NEM instance and which settings this NEM instance MUST
work with.

NEM mandate format — it is a subset of UMF specifications describing which information MUST and MAY be
provided by the UMF system to the NEM.

NEM manifest — it describes a given NEM class. This description provides guidance to the network operator in
order to install and configure an instance of this NEM class — the goal of a NEM manifest is similar to a
datasheet). This description is issued by the NEM designer towards network operators.

NEM manifest grammar — it is a subset of UMF specifications describing which information MUST and MAY be
provided by the NEM developers in order to describe their NEM class.

NEM skin — Software component common to all NEMs. It provides to the NEM developer the UMF interfaces
and the de-facto NEM behaviour (i.e. registration, configuration, knowledge-exchange and management)
needed for interaction with the UMF core and compliance with the UMF specs.

NEM specifications — they constrain the behaviour of NEMs and define the generic part of their interfaces with
UMF elements.

Unified Management Framework (UMF) — A framework that will help produce the unification, governance, and
“plug and play” of autonomic networking solutions within existing and future management ecosystems. The
objective of the UMF is to facilitate the seamless and trustworthy deployment of NEMs. The UMF has three core
blocks that are used by the NEMs to achieve this, as shown in the figure below.

.

Y

7
-

i UMF CORE i
I i
[1
i GOVERNANCE COORDINATION KNOWLEDGE :
: !
1 1
1 1
H 1
| /
\‘ X

NEM_x

NEM_y
FB FB
method

Use case — A descriptor of a set of precise problems to be solved. It describes steps and actions between
stakeholders and/or actors and a system, which leads the user towards an added value or a useful goal. A use
case describes what the system shall do for the actor and/or stakeholder to achieve a particular goal. Use-cases
are a system modelling technique that helps developers determine which features to implement and how to
gracefully resolve errors.

FP7-UniverSelf / Grant no. 257513 110

D2.2 — UMF specifications: Release 2

12 Annex A: Restful UMF API description

In order to support the UMF specifications in practice, an Application Programming Interface (API) in the form
of a library redistributable has been developed, namely the "UMFCommon". The purpose of such a library is
twofold: provide an abstraction layer of UMF interactions and RESTful details to the NEM developer while
complying with the specifications so that any other UMF-compliant implementation, disregarding of the
hosting platform or the programming language, will be able to use the RESTful interfaces exposed by
UMFCommon. So, although this library has been implemented in JAVA as a proof of concept, the published
RESTful interfaces can be used by any web technology and vice versa, i.e., the library can be exploited in such a
way that it utilizes the same information model with a communication technology other than HTTP.

The largest part of UMFCommon consists of the so called "NEM skin". As one would expect, the skin is the
common behaviour between all NEMs including their interfaces to CORE blocks (management and knowledge-
exchange). For the seamless binding of JAVA methods to HTTP resources, an underlying mechanism has been
implemented and included in the package. In practice, the final result, is that one developer might build a UMF
compliant NEM using UMFCommon and without having to deal with any particular UMF workflow,
specification or HTTP detail, while the other end (e.g. CORE) might be implemented in any web-based, RESTfull
client or server technology.

FP7-UniverSelf / Grant no. 257513 111

D2.2 — UMF specifications: Release 2

13 Annex B: Data Dictionary

13.1 Overview of SID Policy Model

This annex presents an overview of the SID Policy Model [Shared Information/Data (SID) Model. Addendum 1-
POL Common Business Entity Definitions — Policy. GB922 Addendum 1- POL. Version 1.3]. The goal is to identify
how the SID model can be used inside UMF, and identify possible needs for extensions.

SID organizes the Policy Domain in 4 collections of business units, called Aggregated Business Units (ABEs):
Policy, Policy Specification, Policy Application and Policy Management, as depicted in Figure 41.

Pelicy Domain y

Policy
Specification

Policy Policy
Application Management

Figure 41. SID Policy Domain.

The Policy ABE defines the core groups of entities that are used to represent policy, independent of its content.
The Policy Specification ABE templatizes these five entities. The Policy Application ABE defines how policy
applications can be built, and the Policy Management ABE associates policy entities with other SID entities.
These are shown in Figure 42below, where the refinement into the second level ABEs is presented:.

ya Policy Domain \

Policy Policy Policy Policy
Specification Application Management
Policy Set -
: Pu;:?et Palicy Application I —
Palicy

Condition Policy Server

Policy ; i
Policy Condition Spec M:;;r:ﬂc:nt
Action : Policy Broker

Policy
Action Spec Policy

Decigion Point

Service
Management

Policy
Statement

Policy
Palicy Statement Spec Policy
Event Enforcement Point
Puolicy
Event Spec Policy
Execution Point

Figure 42. Level Two of the Policy Domain of the SID Framework.

13.1.1 Policy

The main entity in the policy domain is the PolicyRule, defined as an intelligent data container. It contains data
that define how the PolicyRule is used in a managed environment as well as a specification of behaviour that
dictates how the managed entities that it applies to will interact. The contained data is of four types: (1) data
and metadata that define the semantics and behaviour of the policy rule and the behaviour that it imposes on

FP7-UniverSelf / Grant no. 257513 112

D2.2 — UMF specifications: Release 2

the rest of the system, (2) a group of events that can be used to trigger the evaluation of the condition clause
of a policy rule, (3) a group of conditions aggregated by the PolicyRule, and (4) a group of actions aggregated by
the PolicyRule.

ContainsEventSets

0.1
PolicyEveniBase
1”*
0.1 o1
* + _policyRuleBase
PolicyCondition PolicyRuleBase PolicyAction
* isCNF : Boolean *
1% « | hasSubRules : Boolean ¥ 1%
= PolicyRule

+ _policyRule *

SpecifiesPolicyRule
+ _policyRuleSpec ., 4
PolicyRuleSpec
executionStrategy : Integer
sequencedActions : Integer
policyActionSelectCriteria : String

policyConditionSelectCriteria : String
policyEventSelectCriteria : String

Figure 43. Representation of a PolicyRule.

PolicyRules are built from PolicyRuleSpecifications (called PolicyRuleSpec in the model). A PolicyRuleSpec acts
as a mechanism to specify the invariant (i.e., non-changeable) features and behavior that makes up a Policy. A
PolicyRuleSpec has two important attributes that all PolicyRules have, called executionStrategy and
sequencedActions.

The executionStrategy attribute is an enumerated integer that defines the strategy to be used when executing
the sequenced actions aggregated by this PolicyRule. Defined execution strategies include:

1. Do Until Success

2. DoAll

3. Do Until Failure

4. Do All Without Failure or Do Nothing

The sequencedActions attribute is an enumerated integer that defines how the ordering of the PolicyActions
associated with this PolicyRule is to be interpreted. Values include:

1. Mandatory

2. Recommended

3. Best Effort

The PolicyRule entity itself defines two attributes, isCNF and hasSubRules. PolicyConditions can be represented
in two different forms, called Conjunctive Normal Form (an AND of ORs) and Disjunctive Normal Form (an OR of
ANDs). The isCNF attribute defines which one of these forms the PolicyCondition clause is.

A PolicyRule is designed to be used for a single purpose. Sometimes, a management system needs multiple

separate policy decisions and actions to be conducted in concert. A PolicyGroup is a generalized aggregation
container. It enables PolicyRules and/or PolicyGroups to be aggregated in a single container

FP7-UniverSelf / Grant no. 257513 113

D2.2 — UMF specifications: Release 2

ContainedPolicySetsDetail
enabled : Integer
priority : Integer

0.1

PolicySet
PolicySet... SpecifiesPolicySet isMandatoryEvaluaton : Bookan

1 = usage 3 Sting

+ _polcySet

PolicyGroup PolicyRuleBase

Figure 44. Policy Set.

Both a PolicyGroup as well as a PolicyRule can act as intelligent containers. This common capability is
abstracted and generalized into a common superclass, called PolicySet. A PolicySet can therefore be usedto
define common semantics for PolicyRulesand PolicyGroups.

The ContainedPolicySets aggregation is used to gather together discrete PolicySet objects to form a group of
PolicySet objects. Such a group must share the same DecisionStrategy. Its semantics are implemented by the
ContainedPolicySetsDetail association class.

The ContainedPolicySetsDetail association class represents the semantics of the ContainedPolicySets
aggregation. It provides additional semantics that enable this grouping of PolicySets to be prioritized and
enabled, so that they can interwork with other PolicyRules and PolicyGroups.

PolicyEvents are significant occurrences that trigger the evaluation of one or more PolicyRules. The composite
pattern is used to define atomic and composite PolicyEvents:

EventTriggerDetails

retryNumber : Integer
retryPolicy : Integer
A triggerStartTime : TimeStamp
ContainsEventSets triggerEndTime : TimeStamp
triggerConstraints : String

* 0.1
PolicyEventBase PolicyRuleBase
hasEventEvaluated : Integer 1 isCNF : Boolean

* | hasSubRules : Boolean
{filed in by triggerConstraint}

= PolicyEvent

HasPolicyFvents
g eventSequenceNumber : Integer

PolicyEventComposite PolicyEventAtomic

Figure 45. Policy Events and Policy Sets.

The composite pattern is used to build atomic and composite PolicyEvents. A PolicyEventAtomic is a base class
that represents the occurrence of a single atomic event, which is used to trigger the evaluation of the condition
clause of a PolicyRule. In contrast, a PolicyEventComposite is a base class that represents the occurrence of a
composite event. A composite event is an event that is made up of a set of PolicyEventAtomic and/or

FP7-UniverSelf / Grant no. 257513 114

D2.2 — UMF specifications: Release 2

PolicyEventComposite entities. Like a PolicyEventAtomic, a PolicyEventComposite can also be used to trigger
the evaluation of the condition clause of a PolicyRule.

There is significant similarity between the most common types of PolicyConditions and PolicyActions.
Specifically:
PolicyConditions are of the form: “IF <policy-condition> is TRUE”
PolicyActions are of the form: “SET <action-target> to <value>
Both the condition clause and the action clause are in reality of the same form:
{ variable, operator, value }

where the braces are used to denote a tuple. To see this, we can write a PolicyCondition as:

IF <variable><operator><value> is TRUE

This enables the model to generalize the standard form of a PolicyCondition and a PolicyAction into an object
that is called a PolicyStatement. This has important implications, since a Policy Decision Point, a Policy
Enforcement Point, and a Policy Execution Point can now share the same basic syntax. Both PolicyConditions as
well as PolicyActions share the same variables and values; the difference in semantics is reflected in the types
of operators that are allowed to be used for PolicyConditions versus PolicyActions

PolicyStatement

UsesValue UsesOperator

UsesVariable

1. .*
PolicyValue PolicyVariable PolicyOperator
% opType : Integer

1“*

ValueConstraintDetails OperatorConstraintDetails
valueConstraint : String operatorConstraint : String

Figure 46. Policy Statement.

The condition clause of a PolicyRule is represented by a Policycondition. This class can be used to represent
rule-specific or reusable policy conditions

FP7-UniverSelf / Grant no. 257513 115

D2.2 — UMF specifications: Release 2

UsesValue PolicyStatement UsesOperator

UsesVariable

1”*

PolicyValue PolicyVariable PolicyOperator
opType : Integer

1“*

ValueConstraintDetails OperatorConstraintDetails
valueConstraint : String operatorConstraint : String

Figure 47. Policy Condition.

PolicyAction is an abstract base class that represents how to form the action clause of a PolicyRule. This
consists of a single occurrence of a PolicyStatement, which is of the form: {variable, operator, value}.

Policy actions have the semantics of "SET variable to value", which is implemented by a PolicyStatement. In
order to provide flexibility, DEN-ng defines two types of actions:

e pass actions are invoked if the condition clause was TRUE

e fail actions are invoked if the condition clause was FALSE

ContainedPolicyActionDe...
| containedActionOrder * Tnteaer =5

-

PolicyActionRuleDet...

,/"4
arder - Tnceagr S

o

¥
PolicyAction 1% e * PolicyRuleBase
H PolicyRule

PolicyActionComposite PolicyActionAtomic PolicyActionVendor
actionSequence : Integer actionSequenceNumber : Integer actionData : OctetString
actionExecutionStrategy : Integer hasExecuted : Integer actionEncoding : String
hasSubPolicyActions : Boolean hasSubActions : Boolean actionResponse @ Boolean
actionsCNF : Boolean

0.1

PolicyStatementInPolicyAction

1
PolicyStatement

Figure 48. Policy Action.

FP7-UniverSelf / Grant no. 257513 116

D2.2 — UMF specifications: Release 2

13.1.2 Policy Application ABE

A PolicyApplication is a special type of entity for use in policy-based management applications, and it is used
for defining relationships to different managed entities. It has four principal subclasses: PolicyServer,
PolicyDecisionPoint (PDP), PolicyExecutionPoint (PXP) and PolicyEnforcementPoint (PEP). This relationship is
shown in Figure 49.

PolicyActionEnforcedBy

* S ®
ManagementDomain ScopedManagedEntities ManagedEntity %
® * PolicyAppInvolvedWith
{must have 1..n PDPs}
= o * {1..n PEPs}

«PolicyDomain = PolicyApplication {and 1..n PXPs}

= * 3.® ContainsPolicyApps

0.1
HasPolicySubDomains
kS
1.* 1 1 1.7 0.1
= PolicyEnforcementPoint = PolicyDecisionPoint PolicyExecutionPoint = PolicyServer
&
1 & *® l”x L
PolicyBroker

0.1

Figure 49. Policy Application simplified view.

A PolicyServer is a fundamental building block of a policy-based management system. It represents both a set
of core functionality for implementing policy as well as a unit of distribution in a distributed implementation. A
PolicyServer is an entity that is either manufactured or is constructed by integrating the functionality of
different PDPs, PXPs, PEPs, and other applications. These other applications provide the logic to manage and
control the set of PDPs, PXPs, and PEPs that constitute a PolicyServer.

Input Policy Policy Local Server Local Server
Translation Logic Validation Logic Conflict Resolution Control Logic

! f f f
B !

Technology sae | Technology Policy
CDR #1 L~ CDR #1 L Repository
b T e [y
[¥
[| 3
Technology || |ee=s Technology
PDP #1 H PDP #1
‘(Em_é -
'“hﬂ“mir_)‘_’ Enforcement

1 $!

Figure 50. Anatomy of a Policy Server.

FP7-UniverSelf / Grant no. 257513 117

D2.2 — UMF specifications: Release 2

PolicyServers affect ManagedEntities in a particular PolicyDomain, and are coordinated through a PolicyBroker.
The purpose of the PolicyBroker is to control how different PolicyServers interact with each other. In this
regard, it has two different functions.The first function is to ensure that conflicts between different policy rules
don't exist when different Policy Servers are asked to work together. The second is to coordinate the
application of different policies in different Policy Servers.

A PolicyDecisionPoint makes policy decisions for itself or for other entities that request such decisions, such as
PolicyEnforcementPoints (PEPs) and PolicyExecutionPoints (PXPs). PDPs use policies to configure or answer
queries from policy-capable network elements or from an operator. One or more PolicyDecisionPoints are
contained in a PolicyServer.

A PolicyExecutionPoint is an entity that executes a policy decision given to it by a PDP. A
PolicyEnforcementPoint is is used to verify that a prescribed set of PolicyActions have been successfully
executed on a set of PolicyTargets. A PolicyEnforcementPoint serves as an interface between the devices that
policy is executed on and the policy decision-makers (such as the PolicyDecisionPoint) of the policy.
PolicyEnforcementPoints request work to be performed from PolicyDecisionPoints, and then enforce decisions
made by PolicyExecutionPoints on their PolicyTargets.

13.1.3 Policy Management ABE

This ABE describes how policy can be used to manage different types of managed entities.

= OwnsServiceDetails . & OwnsResourceDetails

1 | PartyRole
0.1 1 0.1
. x 2
| ValueNetworkRole
\ [
GrantsServiccAdminRights ‘ X GrantsResourceAdminRights
| & AdministerServiceDetails Administrator Technician *.| & AdminsterResourceDetails
|
l .
ManagementPolicyForService ManagementPolicyForResource
3 N
ServiceManagementPolicy ResourceManagementPolicy
servicePolicyValdFor : TimePeriod resourcePolicyValdFor : TimePeriod

Figure 51. Using Policy and PartyRoles to Manage Resources and Services.

A PartyRole defines the function that a Party takes on. PartyRoles can represent the ability to manage,
configure, use, and perform other types of interactions with LogicalResources. Service and Resource
management methods are symmetrical.

The OwnsResourceassociation defines the set of Resources (PhysicalResources and/or LogicalResources) that a
particular PartyRole owns. The AdministersResource association defines the set of Resources
(PhysicalResources and/or LogicalResources) that a particular Party, playing the role of ValueNetworkRole,
administers. From a business perspective, the Owner has to either appoint or give permission to the
Administrator to administer the Resource that is owned. This is done using the GrantsResourceAdminRights
association.

The ResourceManagementPolicy class defines the particular policies that are used to define how different
aspects of the Resource are managed and maintained.

13.1.4 Policy Specification ABE

The main purpose of all entities in the PolicySpecification ABE, from the business point-of-view, is to provide a
standardized structure of the entity that the Spec refers to. Policy templates provide a very important

FP7-UniverSelf / Grant no. 257513 118

D2.2 — UMF specifications: Release 2

advantage — the ability to define standard templates, or specifications, that can be used to manage different
types of managed entities. Reader may refer to Policy Addendum in order to get deeper description of the

Policy Specification ABE.

13.2 UMF info model diagrams

class DEN-ngContext /

Entity’
Root Business Entities ABE::
ManagedEntity

ManagedEntityHasContext

— <
0.*

+ managementMethodCurrent: int
+ managementMethodSupported: int

ContextDataDetails

ManagedEntityHasContextData

+ contextDataValidityEndTime: String
relatedContext 0.%| |0.* + contextDataValidityStartTime: String| 0.
+ isContextDataMandatory: Boolean
Context + isvalidContextData: Boolean ContextData
0.x |
L o
1+ 0.* HasContextData
ZF AggregatesContextda
0.0 <L 0.
ontextCe ContextDataAtomic ContextDataComposite

ContextAtomic

—

ContextFact ContextFact ContextDataFact

ContextDatalnference

Figure 52. Information model of DEN-ng Context

+_senicePackageSpecComposite [0..1

class Servicepackagebudnle /

CustomerFacingSenviceSpecConposite
Service Package ABE:
ServicePackageSpec

+_senicePackageSpec

o-
tbag) & packageType: int

HasSenvicePackageSpecs

Service Package ABE
ServicePackageSpecAtomic

bag})

A

Service Package ABE:
ServicePackageSpecComposite

Service ABE

Service Package ABE
PlatinumPackageSpec
Service Package ABE:
GoldPackageSpec
Service Package ABE:

SilverPackageSpec

Service Package ABE:

BronzePackageSpec

ResourceFacingSenviceConposite|
ResourceFacing Service ABE:
ServiceBundle

+ hasMultipleQoSTypes: boolean

ResourceFacing

s

ResourceFacing
Service ABE

ResourceFacing
Service ABE:

Figure 53. Information model of Service package bundle

FP7-UniverSelf / Grant no. 257513

119

D2.2 — UMF specifications: Release 2

class Serviceperformance /

Service Performance

+_performance =25

Specification ABE::
ServicePerformance Spec
ABE:
PerformanceSpecification
Resource Performance | ————— 7| = dssaiption: sing
Specification ABE:: = ID: string =
ResourcePerformance Spec + name: string o
<+ validFor: TimePeriod [noo)

PartyRole

Customer ABE::Customer

+ customerRank: int
+ customerStatus: string
+ ID: string

0.1

PerformanceleasuredForCustomer

{bsg}

PerformanceSpecificationClassifiedBy

Sgeuiimtio%. 2

{bag}
N

N\

{bag} + intervalTime: int

PerformanceSpecificationMeasuredUsing

10.0

While instantisting the diagram we need to Specificafion ABE.
precise: PerformanceCatSpecificatic
- The target of the

0.~ +,

Performance Category

this will be one for the UMF core blods (e.g.
GOV, COORD, or KNOW)

desaiption: string
ID: string
name: string

{bag}—{b2g} PerformanceCatSpecRel.

#
{osg}

onship

-_performanceCatSpecification

2

Self-healing hss been identified ss
a remedy action fi.e.
PerformanceConsequence) for low
relisbility level

Load balsncing has been identified
3 3 remedy action i.e.
PerformanceConsequence) for low

Service

Resource

speed level

ABE:

N\

T

- The specific functionality/cbjective the
performance messurements will be used for; th
objectives are captured through certain
functionalities within the UMF core blodks (e.g.
orchestration).

validFor: TimePeriod

+_performancelndicatorSpecification) 0..*

Service Package ABE::
ServicePackageSpec

+ pacageType:

int

Service Package ABE::
ServicePackage SpecAtomic

Service Package ABI N
PlatinumPackage Spec %

{bag})

Performancelndicator Specificatic

+_performancelndicstorSpecificstion 0..* 1
{bag} H

Performance Specification ABE:: E

Performance Specification

desivationAlgorithm: string
derivationMethod: string
desciption: string
ID: string
indicatorCategory
name: string
perspective: string
validFor: TimePeriod
valueType: string

string

e

s
{bag}
PerformancelndicatorSpechieasuredBy

+_performancelndicatorSpecification

{osg}

PerformanceConsequence

+ desoription: string
+ D

string
name: string
prascribedAction: string

+_performanceCansequence] 0.-
{bag}

PerformanceUnmetResultsin

Cell utilisation has
been identified as 8
==~ KPI for availsbility
level and speed level

PerformanceCriteria
“ + availability: String

4 + integrity: String

Service Package ABE: N + relisbility: String
GoldPackage Spec N < restorability: String

ice Package ABI /
erPackage Spec s ;
This diagram is o be used for the user class.
Service Package ABE:
BronzePackage Spec

Service Package ABE::
BestEffortPackage Spec

Different Users Classes have been defined
within the Project: gold, silver, bronze, any).

Each User Class has defined desired QoS Level
broken down to

- desired availability level

- desired reliability level

- desired speed level

- desired security level

PerformanceObjective

P

conformanceComparstor: string
conformancePeriod: Duration
conformanceTarget: int
desaription: string
gracePeriods: int

ID: string

name: string
thresholdTerget: int
tolerancePariod: Duration
tolersnceTarget: int
validFor: TimePeriod

Figure 54. Information model of Service Performance

13.3 Information flow in the UMF

This section aims at providing an overall view of the information which is being exchanged among the UMF
core blocks as well as between the UMF core blocks and the NEMs.

Table 14 Information flow in the UMF

Information Concepts and Attributes Interface Clarifications -
Examples
Operator High Level Objectives (HLOs), associated to NO-GOV | The network
e Network Operation, operations are
® UserClass, related to NO
e Targeted QoS Level, objectives.
e Newly-deployed Service.
User class(es) are
linked to NO
objectives.

FP7-UniverSelf / Grant no. 257513

120

D2.2 — UMF specifications: Release 2

The QoS level s
linked to NO
objectives.

Service Attributes NO-GOV The Service Attributes
e Service Type (streaming, interactive, background, p2p, IP-TV, Internet) are communicated
e Network Technology (Wi-Fi, LTE, FTTH) between the NO and
e Supported QoS Level the GOV as well

o Supported Availability Level between the COORD
o Supported Reliability Level and the GOV.
o Supported Speed Level The Supported QoS
o Supported Security level (excellent, normal, critical) Level refers to the
o Associated QoS cost different values of the
e Service Requirements parameters which are
o required availability level supported by the
o required reliability level Service and can be
o required speed level provided to the user.
o required security level The Service
o associated QoS cost Requirements capture
the typical values
according for example
to the network
technology.
QoS cost is for the
specific service
deployment and desired
QoS level.
Network Information NEM- This refers to low —level
e Network configuration KNOW network information as
o Configuration constraints KNOW- provided to the KNOW
o Network parameter configuration COORD block by the NEMs.
o Network Topology KNOW- Network measurements
o Network status Gov are related to low-level
e Resource Configuration (e.g. Router,...) network information, so
e Network alert (cell outage, other?) it requires monitoring
) Network Monitoring Information (from NEMs) facilities within the
o Monitoring requirements NEMs.
= Required type of monitoring information A summary of the
e Example: link usage for a set of routers network measurements
= Required type of monitoring frequency could be stored in the
e Example: every 5 sec min KNOW block.
o s aggregation needed?
o s aggregated?
e Network Performance Measurements
o Target
o Type (e.g. joint optimization performance, orchestration
performance, ...)
o Metric[]

Policy NEM-GOV | RAT Policy: policy
e RAT Policy GOV- applied to RAT
e Policy Argument COORD Policy —argument s
e Service Policy GOV- super class of RAT,
) Network Policy KNOW Network, Service etc
* UserPolicy Service policy for
* NEM Policy service provision
* COORD Policy Business level Policy

o weights for aggregation of utilities/utility functions
e KNOW Policy Service level Policy
o Optimisation Goal Commands: derived by
= optGoalld NEMs based on NEMs

FP7-UniverSelf / Grant no. 257513

121

D2.2 — UMF specifications: Release 2

optGoalParameters
optGoalStatus
AccuracyObjectives

= objectiveld
objectiveParameter
objectiveStatus
is filtering used

o

policies. Can be
overridden by Control
Policy, i.e. configuration
not derived by NEMs
but enforced to NEMs
and resources.

Opt. Goal- example:
“Optimize everything in
order to save energy”.
The KNOW functions
adapt their tactics in
order to meet this goal.
For example, they
reduce communication
overhead using
information filtering
etc.

Accuracy objective: For
information filtering.
“Please pass me the
value whenever it
changes more than 5%.
| don’t mind having less
accuracy in order to
save energy (to meet
the goal coming from
GOV) through reducing
communication
overhead.

User Class
Type (gold, silver, bronze, any)
User Preferences

o Desired QoS level

= Desired availability level

Desired reliability level
Desired speed level
Desired security level

User Class is Linked to
Qos.

NEM COORD- All these concepts and
e NEM Manifest KNOW attributes are related to
e NEM Mandate COORD- NEM Information
e NEM Information NEM Model. In most cases it
e NEM Instance COORD- is .expected. that Fhe

o NEM instance id GOV object-level |nf9rmat|o.n
o parameters which are affected by NEM operation (e.g. (e.g. NEM Manifest) will
antenna tilt, managed rerource configuration) GOV- be deduced from the
o metrics affected by NEM Operation (e.g link load, throughput) KNOW NEM Information
o NEM timing NEM- Model.
o convergence time (method to produce solution) KNOW
o expected interval between two triggers of the NEM COORD-
o NEM utility (related to NEM target) GOV
e NEM Configuration . . NEM-
o NEM Conf;ﬁuratlon Parameter COORD
= Access rights (r/w/a) NEM-
. Parameter description KNOW
o Current monitoring information
o Current monitoring frequency
e |s NEM information source (for UMF)
e NEM text description
FP7-UniverSelf / Grant no. 257513 122

D2.2 — UMF specifications: Release 2

e NEM Conflict (List)
o lIsatomic
e NEM Status
e NEM monitoring capabilities
o Available type of monitored information []
= Example: link usage for a set of routers
o Available frequency of monitoring
= Example 5 sec max

The above presented information is reflected in the following figure (Figure 55. UMF Information flow).

KNOW Policies

>

HLOs

Configuration of KNOW properties, (e.g. information flow optimisation, algorithms, ...)

»)

P
Aggregated Network Information

Service Attributes

Performance and Accuracy Measurements

COORD Policies

&
€

COORD Policies - update

Call for GOV

F N

COORD

|
ol i
2| & A% I R [
| & ElT =
2| SR
2 = o ol = & o] S
= = 5l 2| B 5| & 8
E| 2|3 % 8 55| £ 5|k
z(& & E S|l 2| | | g &
2| £ = 5| = §| 5| 2
c |2 2| gl e o g @
LA ul gl &2 8 2| &
2 : 29558 ¢
2 8
58
= s 2 £ 2
S =8 T 2
2| O] S

Network Resources

Figure 55. UMF Information flow

Monitored Network Information

KNOW

NEM Information

Network Information

Network monitored information

NEM registration

FP7-UniverSelf / Grant no. 257513

123

