

First IEEE ICC 2012 Workshop on "Telecommunications: from Research to Standards" June 10-11, 2012, Ottawa, Canada

Identifying standardization opportunities of an operator-driven framework for unifying autonomic network and service management

Paper Authors: K. Tsagkaris, A.Galani, P.Demestichas, G.Nguengang, M.Bouet, I.GridaBenYahia, C.Destre, S.Ghamri-Doudane and L.Ciavaglia

<u>Presenter:</u> Samir Ghamri-Doudane – Alcatel-Lucent Bell Labs France

On behalf of the UniverSelf project partners

WWW.UNIVERSELF-PROJECT.EU

Overview

- The UniverSelf Project
- Some Concepts: UMF and NEM
- Specification of the UMF Core Blocks
- Standardization Needs and Opportunities
- Next Steps

The UniverSelf Project

RATIONALE → **Network Transformation**:

- Operational complexity is growing.
- Cost structure is not sustainable.
- Legacy management architecture is no longer adapted.

OBJECTIVE:

Realize carrier-grade autonomic management

→ Multi-facet unification

Federation and unification of existing architectures and management principles across multiple technological contexts.

→ Network empowerment

■ Embed intelligence within networks to achieve self-management

→ Industry impact

Demonstrate deployability, assess impacts and develop strategies for network operators to adopt autonomic solutions

→ Trust and confidence

Demonstrate the reliability of every autonomic solution and Develop standard testing and certification processes

The UniverSelf Consortium: **17 Partners in Europe**

FP7 Integrated Project Funded by the European Commission.

Start date: September 2010.

Duration: 36 months.

Website: www.univerself-project.eu

UMF – a Unified Management Framework

As a mean to achieve unification and establishment of autonomics in the management of networks and services.

→ In this context, standardization is a must!

NEM – Network Empowerment Mechanism

Achieve a self-management function, basically a control loop, with a specific purpose:

- an operational problem to be solved,
- a performance objective to be achieved,
- a network segment or service infrastructure to be targeted.
- → kind of atomic component for autonomic network management.

Design approach: use the relevant method to solve a concrete operational problem in a specific networking environment

So, NEM = method + objective + context

- use of Bayesian inference for fault diagnosis in FTTH environments
- use of genetic algorithm for interference coordination in LTE networks

There is no need for more to design and implement a NEM!

Usual research approach: identify a problem within a specific context and then find/design the relevant method to address it (right key to the lock).

UMF vs. NEMs

Then, when a NEM is deployed, it has to deal with its environment: the operator, the network/service equipments, the legacy management systems and also the other NEMs.

So, if we target a seamless deployment and trustworthy interworking of a large number of NEMs, we need more:

- Tools to deploy, drive and track progress of NEMs → Governance/Human-to-Network tools.
- Tools to avoid conflicts, ensure stability and performance when several NEMs are concurrently working → Coordination/Orchestration mechanisms.
- Tools to make NEMs find, formulate and share relevant information to enable or improve their functioning → Knowledge management.
- Tools to Allow NEMs getting monitoring data and enforcing configuration actions at equipment level → <u>specific adaptors.</u>

3 challenging research topics are outlined above: governance, coordination and knowledge management.

■ The need to focus on these challenges led us to define the <u>UMF Core</u>.

UMF Core specification and Standardization

and then standardization, of:

Recommendations for Development of NEMs (lifecycle, generic structure, ...)

Policy translation levels

Ontology

UMF Core Blocks – Governance

Responsible for:

- The interaction between human operator and its network → express business goals report on critical states of self-managed operations/devices
- Driving NEMs' behavior → policy-based framework for translating business-level, service specific goals/requests into low level, policies and configuration commands

$GOV \leftarrow \rightarrow NEM$:

- Commands to set NEM's status/mode (e.g. active, idle, stopped) and configure its operational parameters.
- Report on the NEM's operational conditions and configuration characteristics (e,g. performance indicators, capabilities/behaviour, interaction with other NEMs).

UMF Core Blocks – Coordination

Responsible for:

- Ensuring the proper sequence in triggering of NEMs and the conditions under which they will be invoked taking into account:
 - ✓ Operator and service requirements,
 - ✓ Needs for Conflict avoidance, joint optimization and stability control.

COORD $\leftarrow \rightarrow$ NEM:

- Commands to drive coordination including: tokens, timing, constraints, status (active/idle), etc.
- Information on the NEMs operation including: parameters, metrics, scope, utility functions, etc.

UMF Core Blocks – Knowledge

Responsible for:

- Providing the suitable probabilistic models methods and mechanisms for derivation and exchange of Knowledge, based on :
 - ✓ Context and configuration information from NEMs,
 - ✓ Policies from Governance,
 - ✓ Information on NEM interactions from coordination

$KNOW \leftarrow \rightarrow NEM$:

- Commands to retrieve, share, derive and manage knowledge including: publish, subscribe, push, pull, request, store, notify ... messages.
- Registration of NEMs.

UMF → Standardization Bodies/Groups

New elements of Generic Autonomic Network

UNIVERSELI

New Scenarios, Use cases & requirements

Architecture, features, use cases, measurements and requirements for SON mechanisms and coordination, O&M aspects and requirements, system architecture and service requirements for future mobile networks

TMForum Evolution of eTOM with autonomics MTOSI/MTNM Semantics, governance & coordination mechanisms

> Learning for Traffic Engineering, Routing, Fault-diagnosis

Metrics, comparative research, collection of use cases

Protocols and algorithms for managing constrained devices, Autonomics in the Internet

NCRG

NMRG

IRTF

LCCN

RG

Alcatel·Lucent

UMF – Current and Next Steps

Finalize the UMF specification Work: functions/operations of the core blocks, interfaces, workflows, design patterns.

→ UMF release 2 to be published by July 2012.

Capture and accommodate future use cases, as a means to prove a great level of reusability of functional blocks and/or interfaces and, hence, to support standardization work.

Design and evaluation of the UMF supporting tools: ontologies, knowledge structures, knowledge management/sharing infrastructures, network governance mechanisms, human-to-network tools, coordination mechanisms, intelligence embodiment methods.

Sustain the efforts towards UMF standardization and development of certification procedures.

Thank You!

The research leading to these results has been performed within the UniverSelf project (www.univerself-project.eu) and received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257513