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Executive summary 
 

This deliverable builds upon the work in task T3.3 previously presented in the deliverable D3.2, and focuses on 
the various techniques within the realm of observation and action. In addition to presenting the progress made 
in the techniques reported in the first year, the deliverable places the techniques together in the context of 
integration within the Unified Management Framework (UMF), the framework and integration structure 
developed in WP2 for unifying management functions that targets the embedding of autonomic paradigms in 
networks. As the work that has been done in T3.3 relates to quite diverse application contexts and is as such 
unsuitable to be combined into a single overall storyline, this deliverable is structured in terms of use cases as 
defined in WP4.  

Thus, the chapters 2 to 7 each pertain to a specific WP4 use case. Each chapter lays out the details of the work 
done on the different techniques (also called Network Empowerment Mechanisms or NEMs, for short) related 
to the given use case. The context, content and merits of each of the NEMs are given. Emphasis was put on 
substantial evaluation results and the progress beyond previously reported work. At the end of each chapter, a 
use case wide discussion is presented that relates the NEMs of a use case in terms of potential interworking, 
and explains the usefulness of UMF for such a collaborative environment. 

The presented techniques cover a significant spectrum of observation related domains (discovery, aggregation, 
diagnosis, mining, and (self-) modelling) and methodologies (fuzzy logic, self-organizing maps, reinforcement 
learning, case-based reasoning, Bayesian networks and statistical analysis). Lƴ ¦ǎŜ /ŀǎŜ м όάSelf-diagnosis and 
self-healing for IMS VoIP and VPN servicesέύΣ ƳŜǘƘƻŘǎ ŦƻǊ Ǌƻƻǘ ŎŀǳǎŜ ŀƴŀƭȅǎƛǎ όǿƛǘƘ ƳǳŎƘ improved accuracy), 
anomaly detection (with high effectiveness while avoiding manual parameter tuning), congestion prediction 
(highly expressive and proactive instead of reactive), flow self-diagnosis of QoS (with high success rate) and 
context acquisition (with significantly compressed yet representative data representation) are described. Use 
/ŀǎŜ н όάbŜǘǿƻǊƪǎϥ {ǘŀōƛƭƛǘȅ ŀƴŘ tŜǊŦƻǊƳŀƴŎŜέύ ŎƻƳǇǊƛǎŜǎ ƳŜǘƘƻŘǎ ŦƻǊ performance improvement of TCP 
Vegas (by classifying the cause of round trip time changes), orchestration of control loops (by automatically 
analyzing the configuration parameter space of the individual sub-loops) and vulnerability management 
όŀƭƭƻǿƛƴƎ ŀǳǘƻƴƻƳƛŎ ŀƎŜƴǘǎ ǘƻ ŀǎǎŜǎǎ ǘƘŜƛǊ ǎŜŎǳǊƛǘȅ ŜȄǇƻǎǳǊŜ ƛƴ ŀƴ ŀǳǘƻƳŀǘŜŘ ǿŀȅύΦ ¦ǎŜ /ŀǎŜ о όά5ȅƴŀƳƛŎ 
Virtualization and Migration of Contentǎ ŀƴŘ {ŜǊǾŜǊǎέύ ŎƻǾŜǊǎ ƛǘŜƳǎ ǎǳŎƘ ŀǎ context discovery improvements 
(by means of rule-based reasoning on raw data) and more efficient video delivery (reducing buffer starvation 
while minimizing capacity needs). Lƴ ¦ǎŜ /ŀǎŜ п όά{hb ŀƴŘ {hb ŎƻƭƭŀōƻǊŀǘƛƻƴ ŀŎŎƻǊŘƛƴƎ ǘƻ ƻǇŜǊŀǘƻǊ ǇƻƭƛŎƛŜǎέύΣ 
capacity enhancements of in-band relay links (via learning-based self-adaptation) and coverage optimization in 
dense base station deployments (via an intelligent reward distribution scheme) are covered. Use Case 6 
όάhǇŜǊŀǘƻǊ-governed, end-to-ŜƴŘΣ ŀǳǘƻƴƻƳƛŎΣ Ƨƻƛƴǘ ƴŜǘǿƻǊƪ ŀƴŘ ǎŜǊǾƛŎŜ ƳŀƴŀƎŜƳŜƴǘέύ ŀŘŘǊŜǎǎŜǎ two load 
estimation mechanisms for RAN cells (one based on Self-Organizing Maps with very good accuracy, one based 
on statistical analysis) and an admission control scheme based on Explicit Congestion Notification (where the 
ƭŀǘǘŜǊΩǎ ǇŀǊŀƳŜǘŜǊǎ ŀǊŜ ŀǳǘƻƳŀǘƛŎŀƭƭȅ ŀŘƧǳǎǘŜŘ ǿƛǘƘƻǳǘ ƪƴƻǿƭŜŘƎŜ ŀōƻǳǘ ǘƘŜ ǳƴŘŜǊƭȅƛƴƎ ǘǊŀŦŦƛŎ ŀƎƎǊŜƎŀǘŜύΦ 
CƛƴŀƭƭȅΣ ¦ǎŜ /ŀǎŜ т όάbŜǘǿƻǊƪ ŀƴŘ {ŜǊǾƛŎŜ DƻǾŜǊƴŀƴŎŜέύ ǇǊŜǎŜƴǘǎ ŀ ƴŜǿ ǿƻǊƪ ƻƴ C¢¢I ǊŜƭŀǘŜŘ Ŧŀǳƭǘ ŀƴalysis 
with very high accuracy. 

Their effectiveness in operation was demonstrated mostly through simulation or mathematical analysis. In 
addition, we also consider the effectiveness of the techniques when used together in the same network, which 
reinforces the need for coordination and exchange of information between these techniques, and identify the 
location and nature of the integration that is required through the UMF in order for the techniques to draw a 
maximum benefit out of the collaboration. 

One of the objectives of this deliverable was to identify what method is best-suited for a given observation and 
action related problem. This particular objective has been addressed in milestone MS31, which provides a 
systematic methodology to assess this question by means of a questionnaire, and the results will be 
conclusively presented in the handbook deliverable D3.9. 
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Foreword 
The main objective of the project UniverSelf is to devise a Unified Management Framework (UMF) that allows 
for trustworthy interoperability of individual autonomous functionalities. We term the functionality Network 
Empowerment Mechanism (NEM) that is defined as: a functional grouping of objective(s), context and 
ƳŜǘƘƻŘόǎύ ǿƘŜǊŜ άƳŜǘƘƻŘέ ƛǎ ŀ ƎŜƴŜǊŀƭ ǇǊƻŎŜŘǳǊŜ ŦƻǊ ǎƻƭǾƛƴƎ ŀ ǇǊƻōƭŜƳΦ ! b9a ƛǎ όŀ ǇǊƛƻǊƛύ ƛƳǇƭŜƳŜƴǘŜŘ ŀǎ ŀ 
piece of software that can be deployed in a network to enhance or simplify its control and management (e.g. 
take over some operations). An intrinsic capability of a NEM is to be deployable and interoperable in a UMF 
context (in a UMF-compliant network). 

In UniverSelf these individual functionalities are approached from three different perspectives in three 
different work packages (WPs). From the WP3 perspective, the algorithmic view (method) prevails, applying 
appropriate methods to solve the use case problems: e.g. use of Bayesian inference (the method) for fault 
diagnosis (the objective) in FTTH environments (the context). From the WP2 perspective, the integration view 
(framework) prevails as an intrinsic capability of a NEM is to be deployable in a UMF context (in a UMF-
compliant network) considering the interdependencies of the functionalities, which entails for trustworthy 
interoperability and interworking. From the WP4 perspective, the system view prevails as a NEM is (a priori) 
implemented as a piece of software that can be tested, validated and deployed. In this context, the ultimate 
Ǝƻŀƭ ƻŦ ǘƘŜ ǇǊƻƧŜŎǘ ƛǎ ǘƻ άǇǳǘ ŜǾŜǊȅǘƘƛƴƎ ǘƻƎŜǘƘŜǊέ ƛƴ a comprehensive and elegant way, i.e. shaping the project 
solution portfolio. 

 

The Network Empowerment work package (WP3) aims to provide the most efficient methods to deliver a 
toolbox of solutions covering selected operator scenarios. It covers all the work needed to study, design and to 
evaluate various algorithms with self-x and cognitive capabilities (hereafter termed methods) together with the 
requirements for their embodiment into network functions to assure trustworthy federation of heterogeneous 
neǘǿƻǊƪǎΦ ¢ƘŜ ǿƻǊƪ ƛƴ ǘƘƛǎ ǿƻǊƪ ǇŀŎƪŀƎŜ ƛǎ ōŀǎŜŘ ƻƴ ǳǎŜ ŎŀǎŜǎΩ ǇǊƻōƭŜƳǎ ŀƴŘ ǎƘƻǳƭŘ ǇǊƻǾƛŘŜ ǘƘŜ ōŜǎǘ-suited 
methods to solve these problems. WP2 as the integration part of UniverSelf will eventually embody the 
algorithms designed in WP3 into the network through the design of enabling mechanisms and facilities.  

The main focus of this deliverable (D3.7) is the work on actions that are taken on certain observations done in 
task T3.3, while deliverable D3.5 focus on work on optimization of system parameters in the task T3.2, and 
deliverable D3.8 will focus on work within task T3.4 on the role of cooperation strategies between control 
loops and network entities. In addition to observation, diagnosis and learning techniques, this deliverable also 
has a focus on integration through the UMF capabilities, and therefore involves close collaboration with WP2. 
In particular, the outcome of milestone MS26, where information of the NEMs described in this deliverable was 
used to work on the UMF integration of the different solutions. 

This deliverable covers techniques for discovery, aggregation, diagnosis, mining, and (self-) modelling of data, 
previously reported in deliverable D3.2, and on how these techniques can interact beneficially and purposefully 
through the UMF. 
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1 Introduction 
 

The main aims of this deliverable are to: 

Á present the progress to work performed on the optimization methods in T3.3,  

Á and to put into view how the various techniques would fit together under the UMF.  

The following chapters focus on the various methods/techniques for observation and action. Within the 
context of UniverSelf, these techniques would be implemented in the form of Network Empowerment 
Mechanisms (NEMs). NEMs, as defined in deliverable D2.2, are pieces of software deployed in the network that 
address a networking problem. In the context of this deliverable, the description of the functionality of the 
relevant NEMs will focus on the various algorithms that they implement. The NEMs implement a range of 
different techniques, and covers different areas of the network. In order to give structure to the set of NEMs 
and also to be able to illustrate and discuss the usefulness of UMF in supporting interactions between different 
NEMs, this deliverable is structured in terms of the Use Cases specified in WP4.  

The Use Cases present the natural context where the various optimization techniques are performed. 
Therefore, each of the chapters 2-7 start with a brief introduction to the given Use Case. After that, the 
different NEMs belonging to that Use Case are described. The focus of the NEM descriptions in this deliverable 
is mainly on the progress that has been made compared to deliverable D3.2 and on the evaluation results that 
substantiate the conceptual explanations which were given previously. At the end of each Use Case related 
chapter, there is a detailed discussion on how the involved NEMs can benefit from and interact via the UMF. 

Figure 1 gives an overview of the various NEMs that are part of T3.3 and thus this deliverable. The conceptual 
ǊŜƭŀǘƛƻƴǎƘƛǇǎ ōŜǘǿŜŜƴ ǘƘŜ b9aǎ Ŏŀƴ ōŜ ƻŦ ŘƛŦŦŜǊŜƴǘ ƴŀǘǳǊŜΦ ²ƘƛƭŜ ǎƻƳŜ b9aǎ όǎǳŎƘ ŀǎ ά{haǎ ƛƴ {ǳǇǇƻǊǘ ƻŦ 
¢/t ±ŜƎŀǎέ ŀƴŘ άt/b ōŀǎŜŘ !ŘƳƛǎǎƛƻƴ /ƻƴǘǊƻƭέύ ǿƻǊƪ ǘƻǿŀǊŘǎ ǎƛƳƛƭŀǊ Ǝƻŀƭǎ όƛƴ ǘƘƛǎ ŜȄŀƳǇƭŜ άŎƻƴƎŜǎǘƛƻƴ 
ŎƻƴǘǊƻƭέύΣ ƻǘƘŜǊ b9aǎ ŜƳǇƭƻȅ ŘƛŦŦŜǊŜƴǘ ƳŜǘƘƻŘǎ ǘƻ ŀŎƘƛŜǾŜ ǘƘŜ ǎŀƳŜ ƻǊ ŀ ǎƛƳƛƭŀǊ Ǝƻŀƭ όŜΦƎΦ ά[ƻŀŘ [ŜǾŜƭ 
9ǎǘƛƳŀǘƛƻƴέ ŀƴŘ ά[ƻŀŘ tǊŜŘƛŎǘƛƻƴ ƛƴ ŀ w!bέύΦ  

 

 

Figure 1: Overview of NEMs in T3.3 
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Other NEMs again use the same method class but apply it to different pǊƻōƭŜƳǎ όά[ŜŀǊƴƛƴƎ-based Self-
5ƛŀƎƴƻǎƛǎέΣ άaƻŘŜƭ {ǘŀǘŜ wŜŘǳŎǘƛƻƴ ŦƻǊ //hέ ŀƴŘ άt/b-ōŀǎŜŘ !ŘƳƛǎǎƛƻƴ /ƻƴǘǊƻƭέ ŀƭƭ ǳǎŜ ŦǳȊȊȅ ƭƻƎƛŎύΦ CƛƴŀƭƭȅΣ 
NEMs might have a temporal relationship, where one NEM can use the output generated by another NEM, for 
instance (this is the case for the dashed arrows in Figure 1). 

Work has been performed by partners to identify the precise benefit and role of UMF for each of the 
relationships depicted in Figure 1. It would, however, be beyond the scope of this deliverable ς whose focus is 
on the NEMs themselves rather than their interaction or UMF ς to present the outcome of all that work here. 
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2 Use Case 1 Related NEMs 

2.1 Introduction 
This UC considers self-diagnosis and self-healing features with two mains applications for a same network 
topology: Self-diagnosis and healing of IP networks and IMS services, and Self-diagnosis and healing of VPN 
networks. 

The objectives are to enable proactive and improved reactive diagnosis and healing capturing the following 
properties: 

 Proactive: to prevent incident impact (not done today). 

 Improved reactive: to reduce the delay between incident or anomaly, detection and reparation and 
then improving the customer experience. 

 Reusable and flexible: to prevent the redesign of the process from scratch for new services or change 
in the network configuration.  

 End to end: to face multiple network domains and technologies which are currently managed by 
dedicated teams with dedicated & ossified tools and to enable an end user diagnosis and healing. 

 

The proliferation of networks and services (heterogeneity of networks and increasing number of services, 
vulnerabilities), highlights the crucial role of assurance processes.  Fault and Performance Management as 
defined before are critical functions towards ensuring the quality of the provisioned services or network 
capabilities, especially in an end to end way. 

The current status is a reactive management: Following customer complaint or/and alarms, operator is then 
handling the problem with lot of ossified tools, isolated and dedicated teams. Operational teams are 
overwhelmed by the amount of data to analyze and to correlate. It implies lot of customer care, IS and human 
effort. 

The goal is to improve reactive management by reducing the delay between incident/anomaly occurrence and 
detection reparation delay, and to enable a proactive management to prevent incident impact. It is also to 
enable micro-granularity management when necessary to focus on end-user issue diagnosis, facing high 
amount of data. 

 

2.2 NEM 2: Self-Diagnosis based on Bayesian Networks and Case Base 
Reasoning 

2.2.1 Context of the work 

Fault diagnosis is a critical task for operators in the context of the e-TOM (enhanced Telecom Operations Map) 
assurance process, whose purpose is to reduce network maintenance costs and improve availability, reliability, 
and performance of network services. Although necessary, this operation is complex and requires significant 
involvement of human expertise. 
This operation is considered as one of the main functions regarding fault management. For that reason, 
intensive research has been conducted over the past years to improve the current diagnosis process, 
investigating the application of numerous techniques from the field of artificial intelligence and graph theory. 
IƻǿŜǾŜǊΣ ǘƘŜǊŜ ƛǎ ǎǘƛƭƭ ŀ ƴŜŜŘ ŦƻǊ ŘŜǾŜƭƻǇƛƴƎ ƴŜǿ ǎƻƭǳǘƛƻƴǎ ŀōƭŜ ǘƻ ŦǳƭŦƛƭ ƴŜǘǿƻǊƪ ƻǇŜǊŀǘƻǊǎΩ ǊŜǉǳƛǊŜƳŜƴǘǎ ŀƴŘ 
face real deployment constraints. 

2.2.2 Content of the work 

We propose a new hybrid approach combining Case-Based Reasoning (CBR) and Bayesian Networks (BN). 
According to literature, Bayesian Networks are currently the most powerful and popular diagnosis method. 
However, the complexity of inference in BN increases exponentially with the number of nodes. Hence, this 
technique is not suitable for large scale systems including a large number of components such as current and 
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future networks with hundreds or thousands of elements. To overcome this limitation, we propose a combined 
case-based and Bayesian reasoning approach to improve the BN inference while keeping the advantages of BN 
technique, the resulting solution improves the degree of automation of the diagnosis process and requires less 
intervention of human expertise. 
In order to optimize the diagnosis process, we consider only a subset of the BN structure, and, inside this 
subset, only the nodes where variations of the monitored parameters have been observed. This subset is 
identified thanks to Case-Based Reasoning. CBR is also used for the learning phase of our approach. CBR 
learning allows improving the process efficiency over time by accelerating the identification and resolution of 
previously encountered pathological cases.  
The part of each technique is summarized in the following: 

1. Fault model management challenges 
         Use Bayesian Network technique for building, and updating the diagnosis model  
         Use the chi-square test for causality graph  
         Leverages multiple observable parameters 
2. Operational challenges 
         Use Case Based Reasoning technique to optimize the diagnosis process  
3. Learning 
         Use Case Based Reasoning for improving the process efficiency over time by accelerating the         
         Identification and resolution of previously encountered pathological cases.   

The details of the approach are available on [1] and [2]. 
 
To create and simulate a network topology, a set of nodes is generated using the BNJ (Bayesian Network Tools 
in Java), an open-source suite software for BN. Each node is characterized by a marginal probability table, 
calculated from statistics collected from the observed network.  
We evaluate and compare the performances of the combined CBR-BN approach to those of the classic BN 
technique. The evaluation results are organized according to a set of metrics, namely: Accuracy, Reliability and 
Speed. 
 
Accuracy: This figure shows that, whatever the size of the original network, our NEM can precisely identify the 
root cause with greater accuracy than the reference approach of fault diagnosis. 

 

Number of nodes in BN BN approach CBR-BN approach 
40 nodes 3 to 4 1 

60 nodes 3 to 4 1 

80 nodes 3 to 4 1 

100 nodes 4 to 5 1 

200 nodes 4 to 6 1 

500 nodes 6 to 8 1 

1000 nodes 15 to 21 1 

2000 nodes 25 to 40 1 

Table 1: Test of accuracy 
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Reliability: According to the dataset, the confidence interval, in 95% of cases, is approximately (96.5, 98.7). 
 

 

Figure 2: Test of reliability 

Speed: The increase in the original network size has less impact on the detection time for the CBR-BN approach 
than for the BN approach (diverging curves). 
 
 

 

Figure 3: Test of detection time 

2.2.3 Merit of the work 

The added-value of our NEM is essentially the reduction of the complexity which appears in a significant 
reduction in the number of nodes involved in the diagnosis process.  
In order to illustrate this phenomenon, the following table details the number of nodes involved in the 
diagnosis process for the BN and CBR-BN cases. For networks greater than 40 nodes, the CBR-BN solution 
enables on average a reduction of the resulting network to a mere 1/10th of the original network size. 
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Number of node 
in BN 

Size of the case for 9 tests  Median 

10 2 2 3 2 3 3 3 3 2 3 

20 2 3 4 4 4 3 5 3 4 4 

30 4 4 3 2 3 4 4 4 5 4 

40 4 5 6 3 4 5 3 5 5 5 

50 5 5 4 6 5 5 5 4 6 5 

80 7 8 5 7 5 6 5 7 7 7 

100 10 9 10 11 10 11 11 10 10 10 

200 23 21 21 18 19 16 21 20 22 21 

500 46 54 49 53 59 42 54 49 62 53 

2000 126 269 420 74 139 305 126 275 431 269 

Table 2: Reduction of network size using CBR-BN 

 

2.3 NEM 13.2: Anomaly Detection 

2.3.1 Context of the work 

Anomaly-based intrusion detection systems (IDSs) aim to classify an activity as benign (normal) or malicious 
(anomalous) by comparing it with a model of normality.  Since the Eighties, many flavours of anomaly-based 
systems have been developed, depending both on the type of information processed (network traffic or system 
logs, for example) as well as the type of modelling technique used (among others: statistical or machine 
learning techniques). In all cases, however, an anomaly detection system can be more or less sensitive to a 
change in normality. The sensitivity of a system to anomalies controls which instances of traffic are flagged as 
anomalous and, in general, it determines the performance of the system. The sensitivity level of an anomaly 
detection system usually depends on a set of system parameters. Such parameters play a central role, since 
they determine the overall behaviour of the detection system and how it reacts to an intrusion. There exists a 
natural trade-off between detecting all anomalies (at the expense of raising alarms too often), and missing 
anomalies (but not issuing any false alarms). 
Despite the deep impact that the system parameters have on the performance of the detection system, the 
literature has put little emphasis on the topic of automatic parameter tuning for intrusion detection systems. 
The task of tuning the system is carried out by the system manager or by expert IT personnel and it requires 
detailed knowledge of both the detection system as well as the network to be protected. While tuning a 
system, the system manager implicitly aims to achieve the best compromise, i.e., keeping the false positives as 
low as possible while trying to detect as many real attacks as possible. We propose to replace this manual 
tuning by an autonomic approach that optimizes the parameters of the detection system toward a high-policy 
goal. 

2.3.2 Content of the work 

The proposed approach allows the system performance to be optimized with respect to the aforementioned 
trade-off between detected anomalies and false alerts. The goal is to allow the system manager to control the 
system performance by specifying high-level policies.  The following figure presents a high-level overview of the 
proposed detection system. We assume the system to be based on a probabilistic model of normal behaviour, 
indicated by ˂ . The system observes a stream of network measurements o1,o2,... and analyzes a window of 
length w of past measurements, to which we refer as observation sequence. 
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¢ƘŜ ǎȅǎǘŜƳ ŜǾŀƭǳŀǘŜǎ ǘƘŜ ƭƛƪŜƭƛƘƻƻŘ ̅ ǘƘŀǘ ǘƘŜ ƻōǎŜǊǾŜŘ ǎŜǉǳŜƴŎŜ ƳŀǘŎƘŜǎ ǘƘŜ ƳƻŘŜƭ ƻŦ ƴƻǊmal behaviour. A 
threshold ץ is then applied to this likelihood to detect unlikely events. Obviously, the selection of the 
parameters ץ and w does play a crucial role in the effectiveness of the detection system. 
We allow the system operator to choose the goal of the optimization in form of a high level policy by defining 
the relative importance of correctly detected anomalies over false alerts. Mathematically, this can be described 
as the optimization problem 

TPTN
w,

max  

where TN  and TP give the true negative rate and true positive rate, respectively, of the detection system and  h
and  ̡ǘƘŜƛǊ ǊŜǎǇŜŎǘƛǾŜ ǿŜƛƎƘǘǎ όάƛƳǇƻǊǘŀƴŎŜέύΦ ¢ƘŜ Ǝƻŀƭ ƛǎ ǘƻ ŦƛƴŘ ǘƘƻǎŜ ǾŀƭǳŜǎ ץ and w that maximize the 
above expression. 
The optimization problem can be solved by considering a probabilistic interpretation of TN and TP. Let X

w
 and 

Y
w
 be random variablŜǎ Ŝǉǳŀƭ ǘƻ ǘƘŜ ƭƛƪŜƭƛƘƻƻŘ ̅ ŦƻǊ ŀƴ ŀǊōƛǘǊŀǊȅ ŀƴƻƳŀƭȅ-free, respectively anomalous, 

observation sequence. Then, TN is equal to the probability P(X
w
Җ ץ) and TP=1- P(Y

w
Җ ץ). The distributions of X

w
 

and Y
w
 can be determined empirically and depend on w and ˂ Φ 

We have applied the above approach to an intrusion detection system for the detection of Secure Shell (SSH) 
brute-force attacks in high-speed networks. The system monitors flow-based measurements of network traffic 
and uses a Hidden-Markov Model (HMM) to compute the likelihood of an observed sequence of 
measurements. The following steps have been performed: 

1. Train the model to normal traffic. 
2. Determine the distributions of X

w
 and Y

w
 for a small set of window sizes. 

3. Fit Gaussian mixtures to the distributions. The fitted Gaussian parameters are extrapolated to other 
window sizes by polynomial fits. 

4. Solve the optimization problem numerically by replacing TN and TP by the Gaussian mixtures fitted to 
the distributions. 

We tested the procedure using six data sets of SSH time series of flows per seconds, each containing both 
legitimate and malicious traffic. Two data sets are synthetically generated. The other four data sets consist 
instead of time series created directly from real traffic collected at the University of Twente network. We used 
two sets for the training of the HMM, while the other data sets have been used for testing. 
Table 3 summarizes the results of the optimization procedure for one of the data sets.  
 

 

Table 3: Results of Optimization Procedure 
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As expected, we observe that the choice of the ratio ʲκʰ controls the achieved TP and TN. A large value of ʲκʰ 
implies a preference for TP and, hence, the optimization procedure chooses a low threshold ץ. In contrast, 
small values of ̡ κʰ enforce a large threshold, resulting in a high TN. In addition, we have measured other 
characteristics of the detection system. For example, the detection lag DA gives the time (in seconds) the 
system needs to detect an attack after it has started. On the other hand, EA gives the time the system needs to 
return to the normal situation after the end of the attack.  As can be seen, a large ratio ʲκʰ and, consequently, 
a high TP result in a short detection lag because the detection system behaves more aggressively. 
A detailed and extensive discussion of the optimization procedure and its performance has been published in 
[3]. 

2.3.3 Merit of the work 

In deliverable D3.2, we have described how to approach the parameter-tuning problem of anomaly-based 
intrusion detection systems by formalizing it in terms of an optimization procedure. In the present deliverable 
D3.7, we provide a detailed description of the necessary steps in order to apply the procedure to a concrete 
intrusion detection system.  The optimization procedure allows to explicitly relating the system parameters and 
the performance measures in the form of an optimization problem. A key characteristic of the proposed 
solution is that it regards optimality according to high-level policies provided by the management environment, 
in this way replacing the manual tuning of the system parameters by the system manager or by expert IT 
personnel. 

We have validated the procedure by applying it to an IDS for the flow-based detection of SSH brute force 
attacks in high-speed network traffic. Our results show that, by varying the relative importance, we are able to 
fine-tune the system to favour either the detection of all the anomalies or the detection of attacks only when 
they are certain. Our findings also show that the relative importance has impact on the detection rate and on 
how timely the system is able to detect an attack or recover from it. 

2.4 NEM 14: Proactive Diagnosis of Congestion 

2.4.1 Context of the work 

This NEM is proposed in the context of improving network management of the system. In particular, addressing 
the problem of congestion prediction it targets at offering the system the capability to proactively handle such 
situations. Towards this direction, the NEM combines network data that can be monitored and reports how 
close a core link is to a potential congestion. This information can be delivered through the Unified 
Management Framework (UMF), following the processes described in the knowledge (KNOW) UMF core block, 
to the respective decision making mechanisms of self-healing so as to treat potential congestions of the links 
proactively and avoid them.  

2.4.2 Content of the work 

The function of the NEM and the provided predictions are based on the past experience of the network. In 
particular the NEM builds knowledge with respect to past monitored network data and what they meant in 
terms of congestion for the monitored link. Towards this direction, the unsupervised machine learning scheme 
of Self-Organizing Map (SOM) has been employed. SOM is a special type of artificial neural network, consisting 
of one input and one output layer, and trained using Learning Vector Quantization (LVQ). The output layer is a 
2D rectangular lattice of units representing points in the input space (usually multidimensional, >2D) and 
arranged by their resemblance.  The input space consists in this application of SOM consists of monitored data 
related to either network traffic, in terms of incoming bytes and/or packets and their respective trends (i.e. 
first- or second- order differences), or to network and link capabilities such as buffer size of the node that 
outputs traffic to the link, average queue load and link capacity have been exploited.  

Each set of values of the monitored parameters was mapped on a 2D map followed by a metric that designated 
how close to congestion the link was. The metric that defined how close to congestion the link was, was the 
percentage of packet drops over the total packets transmitted. Its potential values are three, namely: a) not 
congested (0% drops), towards congestion (<10% drops), congestion (>10% drops).  

After building the necessary knowledge and designing the mechanisms, the evaluation of the methodology 
took place. This involved the comparison of the predicted values of congestion with the real observed ones. 
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The best performance of the mechanisms was observed when the map of Figure 4 had been created from the 
parameters of a) Incoming Bytes, b) the trend of the incoming Bytes, c) the link capacity, d) the queue size and 
e) the buffer size. Using this particular set of parameters, the NEM performed with a percent of correct 
predictions equal to 86.6%.  

 

 

Figure 4: SOM depicting the relation between the capacity (light through dark) and the congestion levels (0 in blue labels 
when the link can serve all the traffic, 1 in green labels when some packets drop but yet is not treated as a congested link 

and 2 in red labels when the link is expected to become congested) of the under question link. 

Useful information can be obtained from the clusters created on the resulting grid by examining the monitored 
data values of any individual unit or by drawing component matrices for any of the monitored parameters (as 
for instance in Figure 4). More details on the exact methodology used and the respective results can be found 
in [1][4][5]. 

2.4.3 Merit of the work 

The main merit of the mechanism is that it targets at discovering potential congestion proactively, i.e. before 
they reach the user or at least at their very beginning. This enables the network operator or the system per se 
to also handle it proactively minimizing the consequences that reach the user, e.g. deterioration of the network 
performance/ application and thus deterioration of the QoS and/ or the QoE. Through UMF, alarms can be 
created and delivered to self-healing mechanisms soon enough in order to avoid congestions and their 
consequences. 

The delta from Deliverable D3.2 description of this mechanism is the addition for individual component 
visualization functionality (as depicted in Figure 4). Furthermore, this section contains results from the 
application of the proposed mechanism while Deliverable D3.2 does not. 

2.5 NEM 20: Self diagnosis based on network and service data 

2.5.1 Context of the work 

Taking into account the description provided in [1], we have proposed the introduction of a self-diagnosis 
mechanism which will allow the management system, using inputs from network elements (network and 
serǾƛŎŜ Řŀǘŀύ ǘƻ ǇǊƻŎŜŜŘ ƛƴ ƛŘŜƴǘƛŦƛŎŀǘƛƻƴ ƻŦ vƻ{ ŘŜƎǊŀŘŀǘƛƻƴ ŜǾŜƴǘǎ ƛƴ Lt ƴŜǘǿƻǊƪǎΣ ŜƴǘƛǘƭŜŘ ά[ŜŀǊƴƛƴƎ-based 
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ǎŜƭŦ ŘƛŀƎƴƻǎƛǎ ōŀǎŜŘ ƻƴ ƴŜǘǿƻǊƪ ŀƴŘ ǎŜǊǾƛŎŜ ŘŀǘŀέΦ aƻǊŜ ǎǇŜŎƛŦƛŎŀƭƭȅΣ ǿŜ ǇǊƻǇƻǎŜ ǘƘŜ ƛƴǘǊƻŘǳŎǘƛƻƴ ƻŦ ŀ ǎŎƘŜƳŜ 
that will exploit service information and by combining it with network measurements will identify whether this 
service flow experiences a problematic situation or not. The self diagnosis mechanism will monitor the served 
flows and by exploiting service information derived from IP Multimedia Subsystem (IMS) servers will identify 
the flows where a specific remedial action should take place in order to tackle the low QoS event. 

For the case study under consideration and for the VoIP service, delay, jitter and packet loss are identified as 
playing a significant role in QoS degradation, thus the event identifier evaluates the aforementioned inputs for 
every active session; in other cases (e.g., heavy load) other monitoring inputs could be used. The membership 
functions of the identified parameters describe the input and output parameters. More specifically, the 
membership functions indicate the values of each parameter, the range of each value and the magnitude of 
ǘƘŜƛǊ ǇŀǊǘƛŎƛǇŀǘƛƻƴΦ ¢ƘŜ ά5ŜƭŀȅέΣ ǘƘŜ άWƛǘǘŜǊέ ŀƴŘ ǘƘŜ άtŀŎƪŜǘ [ƻǎǎέ ǇŜǊ Ŧƭƻǿ ŎƻƳǇǊƛǎŜ ǘƘe input vector, whereas 
ǘƘŜ ƻǳǘǇǳǘ ƛǎ ǘƘŜ άvƻ{ ŘŜƎǊŀŘŀǘƛƻƴέΦ {ǳŎƘ b9a ǇǊƻǾƛŘŜǎ ŀ ƎŜƴŜǊƛŎ ǘƻƻƭ ŦƻǊ ǎŜƭŦ-diagnosis in core network 
elements; the situation perception and the reasoning scheme is the same for all network elements, and is 
induced to them, upon their initial configuration. This is a major drawback due to the fact that, the 
environment conditions might change so the environment perception should change as well. Thus, the 
incorporation of a scheme for the evolution of the environment perception is part the self diagnosis NEM. The 
evolution/adaptation is based on the use of clustering schemes and statistical analysis of the 
gathered/measured data. 

2.5.2 Content of the work 

In [1] we have provided a description of the initial scheme, with the incorporation of a well known clustering 
method, the k-Means. An enhancement to the initial algorithm is related to the statistical analysis of the 
measurements, instead of clustering, in order to proceed in more sophisticated adaptations of the self 
diagnosis mechanism. 

The statistical analysis of a dataset provides information regarding the special characteristics of the dataset; 
the extraction of the probability distributions provides crucial information as regards the available data. Many 
probability distributions are well described in the literature (e.g., Gaussian, Pareto, Log-normal, etc); the 
Gaussian is a very well-known one and is used widely in the literature for the description of various datasets. 
The reasons for such acceptance are related to its nice behaviour and formal mathematical description. 
Furthermore, in case we observe large datasets, based on the central limit theorem [7] the sampling 
distribution of the mean becomes approximately normal regardless of the distribution of the original variable. 

As regards the sampling distribution of the mean, this is centred at the mean value of the original variable 

and the standard deviation of the sampling distribution approximates/ N . 

The general formula for the probability density function of the Gaussian distribution is: 
2

221
( )

2

x

f x e
 

where is the mean value of the measured objects while is the standard deviation.   

2.5.3 Merit of the work 

Initially, we configure the network elements with a generic membership function configuration (Table 4) and 
we compare with the developed ground truth. For the extraction of the ground truth, we use fuzzy reasoners 
that are built specifically for the environment of the data that we generated; thus we consider that when the 
data set is evaluated by them, the decisions will be correct. Using a generic configuration the self-diagnosis 
scheme achieves a success rate of 64%. Given the fact that such self-diagnosis scheme is built to operate 
adequately in all environments we consider this success rate as acceptable. Then, we apply the clustering 
adaptive algorithm in this self-diagnosis scheme and have a success rate of 70.01% (amelioration of 8.6%) 
(Membership functions in Table 5).  

 Low Medium High 

Delay (in ms) 0 ς 80 40 ς 150 >120 

Jitter (in ms) 0 ς 40 20 ς 80 >60 
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Packet Loss (%) 0 ς 0.0035 0.0025 ς 0.008 >0.006 

Table 4: Initial configuration of the input membership functions of the self-diagnosis fuzzy reasoners 

 

 Low Medium High 

Delay (in ms) 0 ς 20 5 ς 80 30 ς 200 

Jitter (in ms) 0 ς 40 35 ς 100 55 ς 200 

Packet Loss (%) 0 ς 0.005 0.004 ς 0.0057 0.0055 ς0.01 

Table 5: Input membership functions of the self-diagnosis fuzzy reasoners after the clustering adaptation procedure 

 
By incorporating the statistical adaptive mechanism and once we have followed the methodology presented in 
[1] we modify the input membership functions (Figure 5). As it is obvious, the input states are being captured 
by new membership functions, which are being described by Gaussian distributions, with higher overlap areas. 
The success rate of the adapted scheme reaches 84% compared to the ground truth (amelioration 23.8%). 

 Low Medium High 

Delay (in ms) 
 ˃ 9.8 30.32 64.69 

 ̀ 10.48 22.2 0.2281 

Jitter (in ms) 
 ˃ 18 48 106 

 ̀ 12 34 26.09 

Packet Loss (%) 
 ˃ 0.0022 0.0047 0.0073 

 ̀ 0.0017 0.0028 0.0018 

Table 6Υ aŜŀƴ ǾŀƭǳŜǎ ό˃ύ ŀƴŘ ǎǘŀƴŘŀǊŘ ǾŀǊƛŀǘƛƻƴǎ όˋύ ƻŦ ǘƘŜ ƛƴǇǳǘ ƳŜƳōŜǊǎƘƛǇ ŦǳƴŎǘions 

 

Figure 5 : Input (Delay, Jitter, Packet Loss) and output (QoS level) membership functions after the adaptation 
procedure. 
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2.6 NEM 21: Optimization of context acquisition and dissemination 

2.6.1 Context of the work 

In this section, the performance analysis of the Context Acquisition and Dissemination mechanism will be 
presented in detail, in the context of the respective NEM (Context Acquisition and Dissemination). This 
mechanism is proved and developed under the scope of UC1 and UC3. Specifically, the proposed context 
acquisition and dissemination framework is based on Data Mining methods for processing, classifying and 
labelling a set of network parameters (e.g. Delay, Jitter, Packet Loss) as monitored by a network element. This 
procedǳǊŜ ǇǊƻŘǳŎŜǎ ŀ vƻ{κ[ƻŀŘ ƛƴŘƛŎŀǘƻǊ ǘƘŀǘ ŎŀǇǘǳǊŜǎ ǘƘŜ ƴŜǘǿƻǊƪ ŜƭŜƳŜƴǘΩǎ ǎǘŀǘŜ ŀƴŘ Ŏŀƴ ōŜ ŀƭǎƻ ǳǎŜŘ ŀǎ 
an initial step to perform several Machine Learning algorithms.  

For addressing the needs of UC1, Context acquisition and Dissemination mechanism is considered as a key part 
of the UC1 concept, namely Self-diagnosis and healing of IP networks and IMS services. Towards this direction, 
the goal to achieve is the proactive diagnosis of QoS degradation events at the core network elements by 
exploiting network (monitoring each network element) and service (provided by IMS servers) measurements. 
In order to meet this target, context NEM needs interaction with NEM 20 (learning-based Self-Diagnosis) by 
exploiting UMF functionality for inter-NEM communication through the COORD block. Specifically, NEM 21 will 
provide a first decision (Low, Medium, and High QoS) of the QoS events, these events will be further processed 
by NEM 21 for extracting context which will finally calibrate the decision making process of NEM 21. This 
procedure is also depicted in Figure 7. 

2.6.2 Content of the work 

Based on the formal proof of concept of this work, already presented in the Deliverable 3.2 [1], the distributed 
Data Mining framework takes as input a large set of network measurements and produces a classification 
scheme according to the geometric characteristics of the input data. Furthermore, a QoS label is added to each 
measurement in order to address the network elementΩǎ ǎǘŀǘŜΦ ¢ƘŜ ǇǊƻŘǳŎŜŘ ǊŜǎǳƭǘǎ Ŏŀƴ ōŜ ŜȄǇƭƻƛǘŜŘ ōȅ ǘƘŜ 
network in order to reduce the amount of the exchanged information among the devices, thus preserving 
resources. 

For the experimental validation of this mechanism, a set of measurements is aggregated in order to feed the 
algorithm with raw network data. Such data are related to specific VoIP metrics, namely Delay, Jitter and 
Packet Loss, randomly generated by MATLAB, taking into strong consideration the real ranges of these key 
performance indicators. For this reason, based on [8], a realistic approach of these ranges is presented below: 

 

VoIP Input Measurements Range 

Metric Range Excellent QoS Threshold 

Delay (msec) 0 ς 2000 (ms) Җ 100 ms 

Jitter (msec) 0 ς 500 (ms) < 75 ms 

Packet Loss (%) 0% ς 100%  (lost/total packets) Җ 1% 

Table 7: VoIP KPIs Ranges. 

Several datasets were generated and tested using the framework, each one based on a different method of 
data representation. As described in [1], for the data pre-processing procedure, two main techniques were 
developed, namely the normalization and the kernel transformations. To this direction, three different datasets 
are produced. The first one contains the real, raw values of the measurements whereas the second presents 
the normalized values of each metric so as to equalize the order of magnitude among the three input 
parameters and facilitate the arithmetic operations. The latter is a Euclidean kernel transformation of the first 
file. Because of the kernel properties, thoroughly presented at [1], the dimensionality of the latter dataset gets 
double due to the dot product properties. Specifically, the form of each tuple i for each dataset can be depicted 
as follows: 

Input Data Representation 

Initial 
Dataset 

( ) 
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Normalized 
Dataset ( , , ) 

Kernel 
Dataset 

( ) 

Table 8: Input Data Representation. 

Proceeding to a further analysis of the datasets, it should be mentioned that the total length of the first two 
datasets is 5.06MB, consisting of 50.093 tuples, with 101.01 bytes per tuple while the latter dataset contains 
the same number of tuples (50.093) with 202.02 bytes per tuple (double size) because the kernel 
transformation has increased the dimensionality of the attributes. 

2.6.2.1 Normalized Dataset 

Starting with the simulation analysis of the normalized dataset, the normalization process takes place 
according to the formal proof of the algorithmic framework. The input measurements are bounded to the 
interval [0, 1] in order to reduce the magnitude and facilitate the arithmetic operations. The respective results 
are presented at Table 9 and Table 10. 

 

Dataset QoS Label Cluster Centroids Cluster Radius 

Normalized 
Dataset 

 Delay Jitter Packet Loss Euclidean Value 

Low 0.182001 0.306748 0.692039 0.456726 

Low-Medium 0.260908 0.410934 0.725792 0.986675 

Medium-High 0.100436 0.136387 0.254454 0.509971 

High 0.149716 0.251389 0.297616 0.607888 

Table 9Υ bƻǊƳŀƭƛȊŜŘ 5ŀǘŀǎŜǘΩǎ /ƭǳǎǘŜǊ /ƘŀǊŀŎǘŜǊƛǎǘƛŎǎΦ 

Dataset QoS Label Cluster Bounds Tuples/Cluster 

Normalized 
Dataset 

 Direction Delay Jitter Packet Loss  

Low 
Left 0.1930  0.2584 0.4850 

15963 
Right 0.1821 0.3069 0.6921 

Low-Medium 
Left 0.2607 0.4107 0.7257 

9838 
Right 0.8358 0.9121 0.8260 

Medium-High 
Left 0.0047 0.0037 0.0030 

10635 
Right 0.1005 0.1365 0.2545 

High 
Left 0.1497 0.2513 0.2976 

13657 
Right 0.4946 0.6721 0.0263 

Table 10Υ bƻǊƳŀƭƛȊŜŘ 5ŀǘŀǎŜǘΩǎ /ƭǳǎǘŜǊ .ƻǳƴŘǎΦ 

The extracted information is significantly reduced compared to the initial data volume since the involved 
network elements will only exchange 12 tuples instead of 50093. Specifically, 4 tuples contain the cluster 
centroids and radius as depicted in Table 9 while eight tuples are used for the cluster bounds representation (2 
bounds per cluster) as depicted in Table 10. Considering that tuple size is 101.01 bytes, only 1212.12 bytes will 
be exchanged instead of 5.06MB, therefore the derived context reaches (0.0024%) of the initial volume. 

Following this approach, the extracted context which is related to the geometric characteristics of each cluster, 
is very accurate since the successfully classified instances ratio is 100%. Instead of communicating the whole 
ŘŀǘŀǎŜǘΣ bƻǊƳŀƭƛȊŀǘƛƻƴ ǘŜŎƘƴƛǉǳŜǎΩ ŎƻƴǘǊƛōǳǘƛƻƴ produces a very descriptive set of data that each NE can 
use/disseminate to describe its QoS state. Specifically, as depicted in Figure 6, the generation of the clusters 
(i.e. spheres) using the produced results for centroids, radius, bounds, etc. Is adequate for the efficient 
representation of both the Low QoS space (black points) and the High QoS one (blue points). 
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2.6.2.2 Initial Dataset 

Regarding the first dataset, the data acquired by the network are provided without pre-processing to the k-
means algorithm. The produced clusters as well as the centroids, radius and bounds are acquired in order to 
achieve context extraction, however, the correctly classified instances of this dataset reach 56% (the respective 
ratio of the normalized dataset is 100%ύ ŘǳŜ ǘƻ ǘƘŜ ŘƛǎǇŀǊƛǘȅ ŀƳƻƴƎ ǘƘŜ ƛƴǇǳǘ Řŀǘŀ ƳŜŀǎǳǊŜƳŜƴǘǎΩ ǎŎŀƭŜΦ 
Finally, further experimental results are available for providing the complete proof of concept of this work (i.e. 
initial dataset and kernel-transformed dataset); they will be presented in detail at the next deliverable. 

 

Figure 6: Normalized Dataset for the QoS related Context Acquisition 

 

2.6.3 Merit of the work 

The results highlight the need of introducing novel data mining concepts in order to infuse cognitive 
capabilities to network elements. The dissemination of the aggregated context by each device in the network 
forms a resource-demanding process in terms of CPU, memory and high bandwidth for the communication 
among the network elements. For this reason, by applying the proposed Distributed Data Mining framework, 
the bulk network data can be replaced by a minimal thus meaningful context. The latter is able to adequately 
describe the whole dataset and preserve the resources required for exchanging all the aggregated 
measurements. Finally, this innovative method can also leverage several Machine Learning capabilities for 
solving complex problems. A respective presentation of the mechanism merits is also available at Milestone 31 
[13]. 

2.7 Discussion 
The UMF is organized into different segments in charge of ensuring the smooth deployment and interaction of 
NEMs. We illustrate below how it can be beneficial to the detection/diagnosis/healing methods. 

2.7.1 Knowledge 

The knowledge plane appears as a natural element both to exchange information between NEMs, and to 
define their inputs and collect their outputs. It also appears as the adequate interface between the managed 
networks/services and the methods deployed to supervise them.  
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For the diagnosis activity, one needs first to define the scope of a given NEM, i.e. to declare what element types 
are managed, but also which instances of these elements in the actual network. This scope definition concerns 
the identification of network elements, network segments, which services, which functions, which flows or 
which sessions, etc. Its unambiguous definition is necessary for smooth inter-NEM coordination. Some 
reflectivity of the network is therefore necessary to establish this common knowledge. It can further be 
exploited by model-based methods that need to be able to navigate among and inside the managed entities 
(see the self-modelling approach for example, or the need to rely on a flow-based representation of the 
network for QoS monitoring). 

Further, NEMs need to access inputs from the network (or from the governance). Therefore they must have 
access to state information about their managed resources. This is particularly crucial for the diagnosis NEMs 
since they are triggered by alarms localized on specific managed objects, or by queries about the state of some 
functionality. Similarly they need to access to configuration information about the managed objects, to be able 
to collect observations (i.e. collect the value of some state variables, on equipment or services), or perform 
tests. 

The outputs of fault management NEMs populate the knowledge plane in the same manner, by raising 
elaborate alarms on specific managed objects, or by assembling (correlating) sets of events behind the same 
root-cause. This is true for both early detection (proactive diagnosis) or for root-cause analysis (reactive 
diagnosis). Further, impact analysis can take as well the form of warning events attached to some objects and 
related to a known malfunction, and the repair suggestions can certainly assume a similar shape. 

Finally, for NEM cooperation, the knowledge plane appears again as a natural candidate for information 
exchange. This is true in particular when several network segments must be jointly managed by the 
cooperation of several NEM instances, one per segment. The same holds for the cooperation of a network 
management NEM with another NEM in charge of the end-to-end services deployed over these physical 
resources, which is one of the objectives of UC1.  

All this suggests that one should definitely consider structuring a knowledge plane in order to facilitate the 
deployment and interoperation of NEMs, in particular through a uniform representation of the managed 
objects and of their relations. 

2.7.2 Governance 

Governance concerns all aspects related to the definition, parameterization and operation of diagnosis NEMs.  

The definition captures the scope of the NEM (which objects it is managing, which vulnerabilities it is 
managing), its deployment pattern (how many instances, which cooperation mode between these instances), 
the definition of its inputs/outputs and possibly the interaction modes with other NEMs located upstream (e.g. 
early detection) or downstream (e.g. impact analysis), the definition of its detection policy, and its declaration 
for visibility by the other NEMs.  

Parameterization captures the setting of all internal values or resources that are necessary to the operation of 
the NEM, for example the balance between levels of early detection and false alarms, the access to generic 
models of the managed elements for diagnosis algorithms based on self-modelling, the access to the OVAL 
repository for the detection of vulnerable configurations, etc. It also captures the definition of the reporting 
frequency, the contents of these reports, etc. 

The term operations gathers the different functioning modes of a NEM, which can be in installation, deployed 
but idle, in test/trial/benchmarking, in stand-alone, or stopped. But the diagnosis NEMs have spurious modes 
characterizing for example the learning phase, the building knowledge phase, whether the NEM works in query 
mode (triggered by the operator) or in supervision mode (triggered by network alarms or other NEMs), etc. 

2.7.3 Coordination 

The NEMs presented in this chapter do not display direct cooperation patterns, in the sense that they do not 
organize in a nice stream as early detection, root-cause analysis, impact analysis, healing, etc. This is mainly due 
to the different network segments or layers addressed by each of them. Nevertheless, such a form of 
coordination is possible and can (should?) rely on information exchanges through the knowledge plane, as 
discussed above. 

The coordination can also be necessary within a single NEM. This is the case for example when several 
instances of this NEM have different scopes, i.e. manage different areas of a network, but nevertheless need to 
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coordinate their work. Diagnosis is a typical instance of such a situation: network resources are usually 
managed independently of the services running on top of them. The network layers themselves are managed in 
a distributed manner, some teams being in charge for example of the access segments, another of the core 
network, others of the metropolitan networks. It is desirable that a NEM in charge of diagnosing end-to-end 
failures in the global IMS network is decomposed into NEM components reproducing such a classical division. 
But the coordination of these NEM components is necessary: for example, a user complaint about service 
quality can be due to errors in the provisioning of resources (e.g. incompatible codecs) or to network 
saturation. Such coordination can be hidden to the UMF and hard-coded into the NEM architecture, or 
conversely exposed to the UMF which will then be in charge of ensuring the correct coordination of the NEM 
components through its knowledge plane.  

In any case, it is desirable to carefully design the knowledge plane in order to facilitate both the definition of 
NEM scopes and objectives (at least to check NEM compatibilities or conflicts), and to facilitate the exchange of 
information between NEMs (interface design). 

2.7.4 Specific example 

Lƴ ǘƘƛǎ ǎŜŎǘƛƻƴΣ ǘƘŜ ǳǎŜŦǳƭƴŜǎǎ ƻŦ ¦aC ƛǎ ŘŜƳƻƴǎǘǊŀǘŜŘ ǳǎƛƴƎ ǘƘŜ ǎǇŜŎƛŦƛŎ ƛƴǘŜǊŀŎǘƛƻƴ ƻŦ ǘƘŜ b9a ά!ŘŀǇǘƛǾŜ {ŜƭŦ 
5ƛŀƎƴƻǎƛǎέ όŎŦΦ {ŜŎǘƛƻƴ 2.5ύ ǿƛǘƘ ǘƘŜ b9a ά/ƻƴǘŜȄǘ !Ŏǉǳƛǎƛǘƛƻƴ ŀƴŘ 5ƛǎǎŜƳƛƴŀǘƛƻƴέ όŎŦΦ {ŜŎǘƛƻƴ 2.6). 

Without the UMF the Adaptive Self Diagnosis and the Context Acquisition and Dissemination could not 
synchronize their operations. The Adaptive Self Diagnosis would have to gather information separately, in 
order to proceed in the adaptation process, which would require much time, given the fact that such an 
adaptation requires a bulk of data (training data) in order to begin its operation. Alternatively, the Self 
Diagnosis mechanism should have the capability to receive the disseminated information from the 
neighbouring network elements that participate in the scheme. Thus, the Context Acquisition and 
Dissemination acts as an enabler for the operation of the Adaptive Self Diagnosis. 

Let us assume that: 
- Both procedures are on the active phase. 

- Both procedures operate independently from each other, i.e. different period of execution. 

- Both procedures monitor the same parameters. 

With the UMF we can harmonize the operation of the two separate procedures: 
- The Self Diagnosis requests for inputs from the KNOW as regards context information (the parameters 

and metrics are defined at the installation phase). 

- In case that KNOW does not contain the required information, it communicates with Context 

Acquisition NEM via COORD.  

- Context Acquisition operates and extracts context information and once triggered by the GOV it 

updates the KNOW.  

- COORD notifies Self-Diagnosis NEM that KNOW contains the requested context.  A new configuration 

is provided to the Self Diagnosis. 

- Self-Diagnosis is executed again, given the new configuration, in order to adapt the previously taken 

decisions according to the extracted context of the previous phase. This is a feedback loop that 

periodically (or on demand) calibrates the way that a NEM perceives its environment. 

The self-5ƛŀƎƴƻǎƛǎ b9a ǎǘŀǊǘǎ ƛǘǎ ƻǇŜǊŀǘƛƻƴ ōȅ ǊŜǉǳƛǊƛƴƎ ŎƻƴǘŜȄǘ ŦǊƻƳ Ybh²Φ Lƴ ŎŀǎŜ ǘƘŀǘ Ybh² ŘƻŜǎƴΩǘ 
contain the context, it triggers COORD for the communication with the Context Acquisition NEM. COORD 
triggers this NEM by interacting with GOV and once the requested context is produced, KNOW is updated and a 
notification is sent to COORD by GOV. Finally COORD provides the results from KNOW. 
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GOV
<<UMFCore>>

KNOW
<<UMFCore>>

COORD
<<UMFCore>>

CA@Router1
<<NEM>>Monitor@Router1

SD@Router1
<<NEM>>

1 : Coordination Request()
2 : Indicator Request()

3 : Context Request()

4 : SetNEMStatus()

5 : SetReportingParameters

6 : SetPolicies

7 : QoSLabels
8 : MonitorRequest()

9 : Monitoring

10 : NetworkData
11 : ContextExtraction

12 : ContextResponse()
13 : IndicatorResponse()

14 : ContextAcqNotification()

15 : Coordination Response()
16 : Indicator Response()

17<<destroy>>

 

Figure 7: Self-Diagnosis and Context Acquisition NEM communication via UMF. 
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3 Use Case 2 Related NEMs 

3.1 Introduction 
5ƛƳŜƴǎƛƻƴǎΣ ŘȅƴŀƳƛŎƛǘȅ ŀƴŘ ŎƻƳǇƭŜȄƛǘȅ ƻŦ ǘƻŘŀȅΩǎ ƴŜǘǿƻǊƪǎ ŀǊŜ ƎǊƻǿƛƴƎ ŎƻƴǘƛƴǳƻǳǎƭȅΦ ¦ƴŘŜǊǎǘŀƴŘƛƴƎ ŀƴŘ 
controlling/managing the network behaviour to meet technical and business objectives is becoming more and 
more complicated, costly and challenging. This is likely to exacerbate in the future, when it is expected that the 
networks will become capable of interconnecting large numbers of interconnected real and virtual resources. 

Then one of the major challenges of future networks will be managing resources in a cost effective way in 
order to meet technical and business objectives whilst ensuring stability, in a context which is becoming more 
and more complex and dynamic. Actually instability in communication networks may have primary effects both 
jeopardizing the network performance and compromising an optimized use of resources. As an example, 
instability of end-to-end communication paths may be dependent both on the control plane components (e.g. 
specific to flow control and dynamic routing) and the management plane operations. Also the arguments for 
introducing advanced flow admission control

1
 are essentially derived from the observation that the network 

otherwise behaves in an inefficient and potentially unstable manner. Even with resources over provisioning, a 
network without an efficient flow admission control has instability regions that can even lead to congestion 
collapse in certain configurations. Another example is the instability which is characteristic of any dynamically 
adaptive routing system. Routing instability, which can be (informally) defined as the quick change of network 
reachability and topology information, has a number of possible origins, including problems with connections, 
router failures, high levels of congestion, software configuration errors, transient physical and data link 
problems, and software bugs. Eventually another potential risk of instability is emerging from the dynamic 
provisioning of real and virtual resources in software-defined network. From a security perspective, the 
stability of a network also depends on its capability to prevent vulnerable configurations. Operations and 
changes that are performed during self-management activities may generate vulnerabilities that expose the 
network to multiple security threats. 

The main goal of UC2 is to develop and demonstrate methodologies to detect and control the occurrence of 
instabilities in diverse network ŎƻƴǘŜȄǘǎΦ  DƛǾŜƴ ǘƘŜ ŎƻƳǇƭŜȄƛǘȅ ƻŦ ǘƘŜ ƳŀǘǘŜǊΣ ǘƘŜ ǿƻǊƪ ŘŜǎŎǊƛōŜŘ ƘŜǊŜ ŘƻŜǎƴΩǘ 
intend providing a solution for all potential network instabilities; at this stage two approaches are explored 
(with simulations and prototype demonstration), specifically by soƭǾƛƴƎ άŎƻƴǎǘǊŀƛƴŜŘ ƻǇǘƛƳƛȊŀǘƛƻƴ ǇǊƻōƭŜƳǎέ 
(i.e. maximizing of Network Utility Functions) and by preventing vulnerable configurations. 

3.2 NEM 15: Self-Organizing Maps in Support of TCP Vegas 

3.2.1 Context of the work 

This NEM is proposed in the context of UC2 and thus the need for stability in the future dynamic networks. 
Towards this direction, it focuses on the instabilities that may occur when trying to use the proactive 
congestion control mechanism of TCP Vegas in a dynamic, in terms of routing, network. In such a case, TCP 
Vegas is misled by the changing Round-Trip Time (RTT) during a reroute, the increase of which designate 
congestion for TCP Vegas and thus decreases the congestion window and the utilization of the link. In other 
words, these misinterpretations lead to instability of the utilization of some links. In order to enhance TCP 
Vegas functionality and make it more stable, this NEM offers to TCP Vegas the knowledge if this RTT change 
was related to congestion or to another reason (e.g. reroute due to a fallen link).  

3.2.2 Content of the work 

TCP Vegas NEM deals with the instabilities and the underutilization of resources by the TCP Vegas algorithm 
when operating on dynamic network conditions. Under certain circumstances, the congestion avoidance 
mechanism employed by Vegas misinterprets a change in the network as congestion and forces TCP flows to 
reduce the congestion window while the appropriate action would be the opposite. As TCP Vegas is based on 

                                                                 
1
 Admission control consists in refusing a new flow if the addition of its traffic would lead to an unacceptable quality of 

service level for that or any previously accepted flow. 
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RTT delay measurements to proactively avoid congestion, the network change which results in 
misinterpretation is any re-configuration that would increase the measured RTTs (reroute to longer path, 
congestion in the backward path-delayed acknowledgements etc) whereas the network change will actually 
result in an improvement. The purpose of this NEM is to enhance TCP Vegas with learning capabilities using 
Self-Organizing Maps (SOMs), so as to support it in deciding whether an increase in RTT is caused by congestion 
or not. This is further translated to a proposal by the learning mechanism to reset the baseRTT (i.e. the 
minimum observed RTT between two nodes) parameter of Vegas (case of no congestion) or to maintain it (case 
of congestion). 

Monitor Network 

Data

Monitor Network 

Data

RTT change

measurements of 

monitored parameters

RTT thresh
no

SOM

yes

Apply and Monitor 

Network Behaviour

action query

proposed action 
Evaluate action

measurements

feedback

network behaviour

 

Figure 8: The followed approach for learning whether a baseRTT reset is needed or not 

This is achieved following the process below: If a significant change in RTT is monitored, the SOM is queried for 
the proposed action with inputs such as the average of RTT and congestion window measurements before and 
after the RTT change (see Figure 8). The proposed action is applied and the flow is monitored for 
retransmissions. If there are no retransmissions within a certain time window, the correct action is considered 
to be reset, while if there are retransmissions the correct action is considered to be maintained. The evaluation 
of the SOM's proposal is fed back to the knowledge base in order to improve further predictions. 

As can be seen in Figure 9 and Figure 10, the methodology indeed allows to use higher congestion window that 
the TCP Vegas on its own and thus enhances the utilization of the network.  
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Figure 9: Fluctuation of the congestion window when using TCP Vegas with and without the support of SOM 

 

Figure 10: Fluctuation of the bit-rate of the TCP flow when using TCP Vegas with and without the support of SOM 

More information and results from the evaluation of the NEM can also be seen in [6]. 

3.2.3 Merit of the work 

The main merit of the work comes from the fact that TCP Vegas is the only congestion avoidance mechanism 
that acts proactively instead of reactively. In particular, other mechanisms such as TCP (New) Reno and cubic 
reacts to retransmissions while TCP Vegas acts before any retransmission is needed, it acts based on the RTT 
that it counts. However, these misinterpretations are a considerable drawback for the future dynamic networks 
and their stability that needs to be ensured. The proposed NEM abstracts this drawback and makes the 
proactive congestion avoidance mechanism of TCP Vegas suitable for being used even in the dynamic 
environments of future network with no risk of instabilities. 

3.3 NEM 47: Network Stability and Control 
Self-ƻǊƎŀƴƛȊŀǘƛƻƴ ƛƴ ŦǳǘǳǊŜ ƴŜǘǿƻǊƪǎ ǿƛƭƭ ōŜ ŀŎƘƛŜǾŜŘ ǘƘǊƻǳƎƘ ŜȄǇƭƻƛǘŀǘƛƻƴǎ ƻŦ άŎƻƴǎǘǊŀƛƴŜŘ ƻǇǘƛƳƛȊŀǘƛƻƴǎέ όƛΦŜΦ 
ǘƘǊƻǳƎƘ ǇǊƻǘƻŎƻƭǎΣ ŎƻƴǘǊƻƭ ƭƻƻǇǎΣ ƳŜǘƘƻŘǎΣ ŀƭƎƻǊƛǘƘƳǎΧǎǇǊŜŀŘ ŀŎǊƻǎǎ ƴŜǘǿƻǊƪ ƭŀȅŜǊǎύΦ Lǘ ǎƘƻǳld be noted even 
ǘƻŘŀȅ LƴǘŜǊƴŜǘ ǇǊƻǘƻŎƻƭǎ Ŏŀƴ ōŜ ǊŜǾŜǊǎŜ ŜƴƎƛƴŜŜǊŜŘ ŀǎ άŎƻƴǎǘǊŀƛƴŜŘ ƻǇǘƛƳƛȊŀǘƛƻƴέ ǎƻƭǾŜǊǎΦ 

DƛǾŜƴ ǘƘŜ ƎǊƻǿƛƴƎ ŎƻƳǇƭŜȄƛǘȅ ƻŦ ƴŜǘǿƻǊƪǎΣ ƛƴ ǘƘŜ ŦǳǘǳǊŜ ǎŀƛŘ άŎƻƴǎǘǊŀƛƴŜŘ ƻǇǘƛƳƛȊŀǘƛƻƴǎέ ǎƘƻǳƭŘ ōŜ ƳŀŘŜ 
more and more automatically (self-*). In ordeǊ ǘƻ ƳŀȄƛƳƛȊŜ ǘƘŜ ōŜƴŜŦƛǘǎ ŦǊƻƳ ά/ƻƴǎǘǊŀƛƴǘǎ {ŜƭŦ-hǇǘƛƳƛȊŀǘƛƻƴǎέΣ 
(exploited through control-ƭƻƻǇǎΧύ ƛǘ ƛǎ ƴŜŎŜǎǎŀǊȅ ǘƻ ƻǊŎƘŜǎǘǊŀǘŜ ǘƘŜƛǊ ŀŎǘǳŀǘƛƻƴǎ ƛƴ ƻǊŘŜǊ ǘƻ ŀǾƻƛŘ ǇƻǘŜƴǘƛŀƭ 
unwanted coupling or even competition causing instabilities, that can jeopardize network performance.  

Actually, maximizing profits, minimizing costs, minimizing the loss are typical economics problems, which can 
be mathematically modelled as CO problems. They concerns the minimization (or maximization) of an objective 
function subject to constraints on the possible values of the independent variables. Interestingly the objective 
function can be a cost function (minimization), utility function (maximization), or, in certain fields, energy 
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function, or energy functional. A feasible solution that minimizes (or maximizes, if that is the goal) the objective 
function is called an optimal solution. 

NEM47 is dealing with network stability by progressing above approach. Scope is defining a practical approach 
for setting-up, configuring and teaǊƛƴƎ Řƻǿƴ ǎŜǘǎ ƻŦ άŎƻƴǘǊƻƭ ƭƻƻǇǎέ ƛƴ ŀ ƴŜǘǿƻǊƪ ƛƴ ƻǊŘŜǊ ǘƻ ŀŎƘƛŜǾŜ 
optimization and stability at the same time. 

3.3.1 Context of the work 

[ŜǘΩǎ ŎƻƴǎƛŘŜǊ ŀƴ ƛƴŦǊŀǎǘǊǳŎǘǳǊŜ ŜƴŎƻƳǇŀǎǎƛƴƎ L¢ ǊŜǎƻǳǊŎŜǎ όƻŦŦŜǊƛƴƎ ǾƛǊǘǳŀƭ ǇǊƻŎŜǎǎƛƴƎ ŀƴŘ ǎǘƻǊŀƎŜύ ŀƴŘ 
network resources (offering virtual routers) and where (Virtual Machine) VM and (Virtual Router) VR can freely 
move from one physical node to another (the physical node merely serve as the carrier substrate on which the 
actual virtual node operate). Assume a dynamic provisioning of virtual resources, both VMs and VRs. This will 
allow load and traffic variations to be exploited in order to improve performance (e.g. limiting hotspots in the 
IT resources) and to reduce power consumption in the routers network. In other words, the size of the physical 
network can expand and contract according to load and traffic demand, by idling or powering down nodes not 
needed. 

In case of hotspots in the IT resources, operators can change the allocation or migrate VMs to improve 
performance. At the same time, as the network traffic volume decreases, operators can migrate VRs to a 
smaller set of physical routers and shut down or hibernate unneeded physical routers to save power. When the 
traffic starts to increase, physical routers can be brought up again and virtual routers can be migrated back 
accordingly. In summary, in this network scenario there is the interaction of two main control loops: the former 
is in charge of allocating VMs across multiple networks for performance optimization; the latter is in charge of 
migrating VRs a smaller set of physical routers for saving power (by shutting down or hibernating unneeded 
physical routers). Although both control loops would be stable if operating alone, the combination of the two 
control loops may risk a positive feedback loop. Even if control loops are made explicit and operating regions 
are well-defined, interactions between them can result in behaviours complex and difficult to understand and 
control. 

NEM NSC (Network Stability Control) is solving this problem. GOV core mechanisms are allowing a Network 
Operator to program the utility functions, the way to combine them in a global utility function, and also other 
parameters and elements related to the NEM operations. Overall the NEM NSC optimizes the global utility 
function in order to find and maintain stable working area in the network phase space. 

3.3.2 Content of the work 

In UC2, for defining the network stability, the concept of network state is introduced, which is a vector of data 
(or relevant network parameters, e.g. QoS, etc.) characterizing the state of the network upon a certain set of 
configurations. Imagine a phase space (with dimensions of said vector) which represents the network 
behaviour in terms of state trajectories changing over time: this phase space has areas where we want the 
ƴŜǘǿƻǊƪ ǎǘŀǘŜ ǘƻ ōŜΣ ŀƴŘ ƻǘƘŜǊ ŀǊŜŀǎ ǿƘŜǊŜ ǿŜ ŘƻƴΩǘ ǿŀƴǘ ǘƘŜ ƴŜǘǿƻǊƪ ǘƻ ōŜΦ 9ƴǎǳǊƛƴƎ ǎǘŀōƛƭƛǘȅ ƳŜŀƴǎ 
ŀǾƻƛŘƛƴƎ ŀōǊǳǇǘ ǇƘŀǎŜ ŎƘŀƴƎŜǎ ƛƴ ǘƘŜ ǇƘŀǎŜ ǎǇŀŎŜΣ ǎǇŜŎƛŦƛŎŀƭƭȅ ƳƻǾƛƴƎ ƴŜǘǿƻǊƪ ǎǘŀǘŜǎ ƛƴǘƻ άƴƻǘ ŘŜǎƛǊŜŘ ŀǊŜŀǎέ 
of said phase space.  

NSC NEM scope is configuring multiple interacting control-loops (or methods) in order to maintain certain 
stable network states. The design is based on defining and associating utility functions (or functionals) to 
control loops, (or methods) used for network empowerment, elaborating and then maximizing a global utility 
function (associated to a network state). As known utility is a value that represents the desirability of a 
particular state or outcome, and a utility function maps states or outcomes to utility values. Two main reasons 
are motivating the use of Utility functions: 

 

 Utility functions allow for a separation between the analysis of the data, and the planning and 

execution mechanisms, with the latter two handled by an appropriate optimization algorithm; 

 Utility functions can serve as a very high level specification of the behaviour of the system. This allows 

business objectives to be directly translated into service level objectives when used with an 

appropriate optimization and modelling algorithm; 
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Moreover, research into utility functions progresses continuously. Interestingly it should be noted the new 
notion of conditional utility and its use to define utility difference networks. The goal of conditional utility is to 
satisfy additive analogues of the chain rule and Bayes rule, while the utility difference network is similar to 
Bayesian networks (this is for further study). 

In our following examples, elements for estimating utility values of (sub-)networks can be related to a few 
principles, that can be monitored (and controlled by nodes configurations) Examples are: Availability, Delay, 
Latency, Network utilization, Network throughput, Network bandwidth capacity, Network costs, Energy 
Consumption. 

 

 

Figure 11: Example: Utility function of Network Throughput  

Specifically it is conjectured that the optimization of a certain global utility function ensures network stability 
(at least in a certain portion of the network phase state): this means maintaining the network state in those 
areas of the phase space which have been designed and planned and avoiding phase transitions. Eventually, 
this global utility function can be seen as a multi-attribute utility function: for example a general expression of 
this aggregation can be a multiplicative form and such forms allow for modelling the interactions between 
control loops). 

The correlation of this phase space with the global utility functionals of the control-loop of the network is still 
under study and should be part of the overall model. 

NEM-47 harmonizes the configurations of a set of control loops or algorithms (intended as network CO solvers) 
in order to avoid conflicts and instabilities jeopardizing the network performance. Figure 12 is showing the 
model and the adopted methodology.   

 

 

Figure 12: Basic Principles used for simulating the NEM 47 (NSC)  
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Each control loop tries maximising its associated objective function. At the same time, an algorithm searches, in 
the space of control loops configurations (using, for example, a beam-search algorithm), those configurations 
allowing maximising the global objective function (which is a combination of the single objective functions). 
This is done at regular intervals, upon reaching a trigger or in reaction to changes in the global objective 
function.  

Other methods are under consideration for automating the creation of utility functions: for example evolving 
them through genetic programming. To construct the utility function, the genome consists of a predicate 
grammar. On the other hand, such utility function can only provide Boolean values, where one of the main 
attractions of utility is to provide comparable values for optimisation. 

3.3.3 Merit of the work 

Preliminary studies results reported in Deliverable D3.2 have analysed stability in a network with several 
control loops. Analysis started by considering aspects related the communication and interactions between 
several controllers (whƛŎƘ ƛǎ ƻƴŜ ƻŦ ǘƘŜ ά¦ƴǎƻƭǾŜŘ tǊƻōƭŜƳǎ ƛƴ aŀǘƘŜƳŀǘƛŎŀƭ {ȅǎǘŜƳǎ ŀƴŘ /ƻƴǘǊƻƭ ¢ƘŜƻǊȅ 
όtǊƻōƭŜƳ пΦпύέ [41]. Specifically, analysis has assumed that each controller has to control its sub-network and it 
has just a partial observation of the overall network over which the end-to-end services are provisioned. The 
exchange of information between controllers implies only partial observations, state estimates, or input values; 
moreover there are constraints on the communication between controllers. The problem investigated in this 
context has been the coordinated control, i.e. the reaching of a stable consensus control of the controllers of 
the sub-networks composing the overall network.  Not only the control objective should be reached, but it 
should be stable. Contributions in D3.2 have concerned the analysis the Kuramoto oscillator model: the 
assumption has been that synchronization problem of a network of oscillators is similar to consensus reaching 
(e.g. for synchronising certain actions or simply for start-stop) in a network of distributed controllers.   

Following step (in preparation of the contributions to this Deliverable) has been extended this basic idea by 
using an approach which is feedback based (replacing Kuramoto oscillators with control loops).  A feedback 
control-theoretic formulation of a self-* problem has involved identifying the primary components: the target 
system, the controller, the controlled variable (measured output), the manipulated variable (control input), and 
possibly transducers and a filter. For example in the case of (competing ς cooperating) controllers in charge of 
resource allocations, we have use measured values of performance parameters (as feedback) to tune the 
control-loop (resource allocations). With this approach the controller gains are variables that must be 
configured according to the design requirements. These gains to steer the system towards a balance between 
the QoS (e.g. response time and the CPU share allocated to VMs, or energy consumption and resources 
allocated to VRs). Next step has been extending this approach to a more general methodology, based on Utility 
functions. 

The merit of the contributions reported in this deliverable is having started elaborating a more general 
methodology (which is implemented and tested through simulation of NEM 47, NSC) based on defining and 
associating utility functions to above said controllers/control-loops and elaborating a global utility function (as 
an aggregated function of single utility functions) for network optimization and stability control.  Key 
ƻōǎŜǊǾŀǘƛƻƴ ƛǎ ǘƘŀǘ ƴŜǘǿƻǊƪ ƳƛƎƘǘ ōŜ ǾƛŜǿŜŘ ŀǎ άǎŜƭŦ ƻǊƎŀƴƛȊƛƴƎΣέ ōǳǘ ǘƘŀǘ ƛǎ ŀŎƘƛŜǾŜŘ ōȅ άŎƻƴǎǘǊŀƛƴŜŘ 
ƻǇǘƛƳƛȊŀǘƛƻƴέ όǘƘǊƻǳƎƘ ŎƻƴǘǊƻƭ ƭƻƻǇǎΣ ƳŜǘƘƻŘǎΣ ŀƭƎƻǊƛǘƘƳǎΣ ŜǘŎύΦ  

²ŜΩǾŜ ǎǘŀǊǘŜŘ ōȅ [42] and [43], where Kelly et al. presented an innovative idea of formulating a network 
constrained optimization problem in terms of maximizing a utility function where the variables are the source 
rates constrained by link capacities and the objective function captures design goals. Merit of the work has 
been extending the idea of using the language of Network Utility Maximization (NUM) to distributed network 
resource optimisation and allocation. Also cross-layer interactions may be characterized by viewing the process 
ƻŦ άƭŀȅŜǊƛƴƎ ŀǎ ŘŜŎƻƳǇƻǎƛǘƛƻƴ ƻŦ ŀ ƎƛǾŜƴ b¦a ǇǊƻōƭŜƳ ƛƴǘƻ Ƴŀƴȅ ǎǳō-problems. These sub-problems are 
άŎƻƳōƛƴŜŘ ǘƻƎŜǘƘŜǊέ ōȅ ŎŜǊǘŀƛƴ ŀƎƎǊŜƎŀǘŜŘ ǳǘƛƭƛǘȅ ŦǳƴŎǘƛƻƴǎΦ   !ŎǘǳŀƭƭȅΣ ǳǘƛƭƛǘȅ ŦǳƴŎǘƛƻƴǎ Ŏŀƴ ōŜ ŎƻƴǎǘǊǳŎted 
based on user behaviour model, operator cost model, or traffic elasticity model. Eventually, in the contribution 
it is conjectured that the optimization of proper aggregated or global utility function ensures network 
optimization and stability.  We have developed some optimized algorithms for assessing this approach from a 
quantitative viewpoint (simulations are still on-going and numerical results will be reported in the next 
deliverable). 
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3.4 NEM 13.1: Vulnerability Management 

3.4.1 Context of the work 

Autonomic computing constitutes a major paradigm for dealing with the complexity of large-scale network 
management. However, human administration errors and changes operated by self-governed entities may 
generate vulnerable states exposing the network to a wide range of security threats. Accordingly, vulnerability 
management plays a crucial role for maintaining safe configurations on devices in these environments. In 
addition to local vulnerabilities, distributed vulnerabilities have also to be assessed over a consolidated view of 
the network in order to detect vulnerable states that may simultaneously involve two or more devices.  

3.4.2 Content of the work 

The objective of this work is clearly to prevent vulnerable configurations that expose autonomic environments 
to security and safety threats. In order to increase the vulnerability awareness of autonomic environments, we 
have proposed to support the integration of vulnerability descriptions into their management plane [14]. We 
have therefore defined a policy-based strategy where knowledge taken from security sources such as OVAL 
[15] vulnerability description repositories is dynamically translated into policy rules. We have mathematically 
formalized the mapping of OVAL vulnerability descriptions into policies, defined a translation algorithm and 
implemented it into Ovalyzer, an OVAL to Cfengine [16] translator. The generated policies enable Cfengine 
agents disseminated in the network to assess network devices and to generate alerts when configuration 
vulnerabilities are observed (see Figure 13). 

 

 

Figure 13: Vulnerability Assessment Strategy 

 

Ovalyzer currently supports the translation of OVAL definitions for the IOS platform where only three plugins 
are required as illustrated in Figure 14. These plugins are capable of translating the appropriate OVAL tests used 
within all the vulnerability descriptions for IOS. The translation statistics depicted in Figure 15 show the 
feasibility of our solution where a linear behaviour in terms of the number and size of the generated files can 
be clearly observed.  In order to extend our strategy to distributed vulnerabilities, we have introduced the 
DOVAL approach [17]. Traditional network-level vulnerability management mechanisms perform a global 
analysis by investigating each network element individually. Even though such approaches can detect sets of 
vulnerabilities that may allow an attacker to perform a multi-step attack, they do not provide the capability of 
detecting vulnerabilities that simultaneously involve two or more devices under specific conditions. The 
underlying problem relies in that each network device can individually present a secure state, but when 
combined across the network, a global vulnerable state may be produced. In order to cope with this problem, 
formal mechanisms for describing distributed vulnerabilities are required. Moreover, using standard means for 








































































