
 
 

   

 

 

 

Deliverable D2.2 

Unified Management Framework (UMF) 
Specifications 

Release 2  
 

 

 

 

 

 

 

 

 

 

 

Grant Agreement 257513 

Date of Annex I 25-07-2011 

Dissemination Level Public 

Nature Report 

Work package WP2 ς Unified Management Framework 

Due delivery date 01 June 2012  

Actual delivery date 17 October 2012   

Lead beneficiary UPRC Panagiotis Demestichas, pdemest@unipi.gr  

 

 

 

 

mailto:pdemest@unipi.gr


D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 2 

  



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 3 

 

Authors UPRC ς Kostas Tsagkaris, Panagiotis Demestichas, Vera Stavroulaki, Aristi Galani, 
Panagiotis Vlacheas, Yiouli Kritikou, Nikos Koutsouris, Aimilia Bantouna,Dimitris 
Karvounas, Evagelia Tzifa, Assimina Sarli, Marios Logothetis, Andreas 
Georgakopoulos, Louiza Papadopoulou, Vassilis Foteinos, Dimitris Kelaidonis, George 
Poulios 

TCF ς Gerard Nguengang, Mathieu Bouet  

ALBLF ς Pierre Peloso, Samir Ghamri-Doudane, Benoit Ronot, Leila Bennacer, Magali 
Prunaire, Laurent Ciavaglia 

ALUD ς Markus Gruber 

FT ς Christian Destré, Imen Grida Ben Yahia, Zwi Altman, Richard Combes 

TIS ς Antonio Manzalini, Roberto Minerva 

TID ςBeatriz Fuentes 

Fraunhofer ς Mikhail Smirnov 

VTT ς Teemu Rautio, Jukka Mäkelä, Petteri Mannersalo, Marja Liinasuo 

UCL ς Alex Galis, Marinos Charalambides, Lefteris Mamatas 

UniS ςStylianos Georgoulas, Majid Ghader  

NKUA - Makis Stamatelatos, Konstantinos Chatzikokolakis, Evangelos Kosmatos, 
Kaliroi Arapoglou, Panagiotis Spappis, George Katsikas 

NEC - Zarrar Yousaf 

 

 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 4 

Executive summary  
 

UniverSelf project aims at adding maturity level to the autonomic networking research field by generating high 
industrial impact, keeping a business focused approach and federating the various valuable research results 
that have already been obtained. In this context, the design of a Unified Management Framework (UMF), 
which targets at embedding the autonomic paradigms in any type of network in a consistent manner, shall be 
developed by an overall functional specification of all its components and the related underlying mechanisms.  

The deliverable 2.2 presents the first complete specification of the UMF specifications. The specification 
focuses on: definitions of the operations and the lifecycle of the Network Empowerment Mechanisms (NEMs) 
that enable networks with embedded autonomic algorithms/solutions into existing and future managed 
networked systems and services ƛƴ ŀ άǇƭǳƎ ŀƴŘ Ǉƭŀȅέ κ άǳƴǇƭǳƎ ŀƴŘ Ǉƭŀȅέ ƳŀƴƴŜǊ; specification of the UMF core 
functional blocks, namely Governance, Coordination and Knowledge; and the identification of mechanisms that 
enable the realization of UMF functions. This specification highlights the opportunities for contributions and 
actions in various standardization bodies/groups, which would pave the way for industry adoption. The next 
release of UMF specification (deliverable 2.4) will consolidate the design artefacts and will also focus on the 
system architecture, deployment and migration aspects of UMF.  

 

 

 
  



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 5 

Table of Content 
1 Introduction ........................................................................................................................ 11 

2 UMF Overview..................................................................................................................... 12 

3 UMF Functional Specifications ............................................................................................. 14 

3.1 Network Empowerment Mechanism (NEM) ......................................................................... 14 

3.1.1 Life-cycle of a NEM instance ........................................................................................................... 15 

3.1.2 Information model of NEMs ............................................................................................................ 18 

3.1.3 NEM Manifest ................................................................................................................................. 23 

3.1.4 NEM Installation and Instantiation ................................................................................................. 25 

3.1.5 NEM Mandate ................................................................................................................................. 26 

3.1.6 NEM Instance Description ............................................................................................................... 27 

3.1.7 NEM Deletion .................................................................................................................................. 30 

3.1.8 b9aΩǎ wŜƭŀǘƛƻƴǎ ǿƛǘƘ /ƻƻǊŘƛƴŀǘƛƻƴ ................................................................................................ 30 

3.1.9 Description of the operations for state transitions ......................................................................... 31 

3.2 Governance block .................................................................................................................. 37 

3.2.1 Human to Network Interface .......................................................................................................... 37 

3.2.2 Policy Derivation and Management function ................................................................................. 38 

3.2.3 NEM Management .......................................................................................................................... 43 

3.2.4 Enforcement function ..................................................................................................................... 46 

3.3 Knowledge block ................................................................................................................... 52 

3.3.1 Information Collection & Dissemination function .......................................................................... 52 

3.3.2 Information Storage & Indexing function ....................................................................................... 55 

3.3.3 Information Processing & Knowledge Production function ............................................................ 57 

3.3.4 Information Flow Establishment and Optimisation function .......................................................... 59 

3.4 Coordination block ................................................................................................................ 64 

3.4.1 Orchestration function .................................................................................................................... 64 

3.4.2 Optimization and Conflict avoidance function ................................................................................ 65 

3.5 Interfaces ............................................................................................................................... 71 

4 UMF core mechanisms ......................................................................................................... 74 

4.1 Governance mechanisms/tools ............................................................................................. 74 

4.1.1 Translation mechanisms.................................................................................................................. 74 

4.1.2 Policy validation, conflict detection and resolution ........................................................................ 80 

4.1.3 Policy assessment mechanisms ....................................................................................................... 82 

4.1.4 Network supervision mechanisms .................................................................................................. 84 

4.2 Information and knowledge management mechanisms ...................................................... 84 

4.2.1 Information collection and dissemination mechanisms ................................................................. 84 

4.2.2 Information storage mechanisms ................................................................................................... 86 

4.2.3 Information processing and knowledge production mechanisms .................................................. 87 

4.2.4 Information flow optimization mechanisms ................................................................................... 88 

4.3 Coordination mechanisms ..................................................................................................... 89 

4.3.1 Optimization and conflict avoidance mechanisms .......................................................................... 89 

5 Standardization aspects ....................................................................................................... 91 

5.1 UMF and Standardization ...................................................................................................... 91 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 6 

5.2 Standardization Opportunities .............................................................................................. 91 

6 UMF in practice ................................................................................................................... 95 

7 Requirements Analysis ....................................................................................................... 100 

8 Conclusion .......................................................................................................................... 104 

9 References ......................................................................................................................... 105 

10 Abbreviations ................................................................................................................. 107 

11 Definitions ..................................................................................................................... 109 

12 Annex A: Restful UMF API description ............................................................................. 111 

13 Annex B: Data Dictionary ................................................................................................ 112 

13.1 Overview of SID Policy Model ............................................................................................. 112 

13.1.1 Policy ......................................................................................................................................... 112 

13.1.2 Policy Application ABE .............................................................................................................. 117 

13.1.3 Policy Management ABE ........................................................................................................... 118 

13.1.4 Policy Specification ABE ............................................................................................................ 118 

13.2 UMF info model diagrams ................................................................................................... 119 

13.3 Information flow in the UMF ............................................................................................... 120 

 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 7 

List of Figures 
Figure 1. UMF Overview and decomposition. ....................................................................................................... 13 

Figure 2. Simplified NEM instance life-cycle. ........................................................................................................ 16 

Figure 3. Detailed NEM instance life-cycle (with transitions). .............................................................................. 17 

Figure 4. Inheritance of UMF information model from SID (NEM part). .............................................................. 18 

Figure 5. Representing the NEM structure in an information model view. .......................................................... 19 

Figure 6. Information model of Policies regarding NEMs. .................................................................................... 20 

Figure 7. Information model of Information and Knowledge regarding NEMs. ................................................... 21 

Figure 8. Information model of Actions regarding NEMs. .................................................................................... 22 

Figure 9. Different time scales of a NEM .............................................................................................................. 31 

Figure 10. Policy levels of UniverSelf approach in parallel with eTOM business process framework levels. ....... 39 

Figure 11. Policy content per level. ....................................................................................................................... 39 

Figure 12. Representation of a PolicyRule. ........................................................................................................... 40 

Figure 13. Representation of PolicyStrusture. ...................................................................................................... 40 

Figure 14. NEM policy definition activity diagram. ............................................................................................... 47 

Figure 15. NEM instantiation activity diagram. ..................................................................................................... 48 

Figure 16. Update Mandate activity diagram. ...................................................................................................... 49 

Figure 17. Change NEM operational state diagram. ............................................................................................. 50 

Figure 18. Register NEM activity  diagram. ........................................................................................................... 51 

Figure 19. Overview of the Information Collection and Dissemination Function. ................................................ 52 

Figure 20. Overview of the Information Storage and Indexing Function. ............................................................. 56 

Figure 21. Overview of the Information Processing and Knowledge Production Function. ................................. 58 

Figure 22. Overview of the Information Flow Establishment and Optimization Function.................................... 60 

Figure 23. Knowledge Exchange workflow diagram using the Pull method. ........................................................ 62 

Figure 24. Knowledge Exchange workflow diagram using the Pub-sub method. ................................................. 63 

Figure 25. Information subscription workflow diagram (i.e., the Resolve Knowledge Dependencies process of 
the NEM registration diagram). ............................................................................................................................ 64 

Figure 26. Manage conflicts activity diagram. ...................................................................................................... 69 

Figure 27. Set Policy activity diagram. .................................................................................................................. 70 

Figure 28. High level representation of the policy continuum for the instantiation of UC6................................. 75 

Figure 29. Policy template in OWL. ....................................................................................................................... 77 

Figure 30. The concept of USER in OWL................................................................................................................ 78 

Figure 31. Policy translation process. ................................................................................................................... 79 

Figure 32. Policy Conflict Resolution interaction. ................................................................................................. 81 

Figure 33. Policy Conflict Resolution flow. ............................................................................................................ 82 

Figure 34. Trust of policies .................................................................................................................................... 83 

Figure 35. Standardization opportunities for UMF/ UniverSelf. ........................................................................... 94 

Figure 36. Example based on UC6. ........................................................................................................................ 95 

Figure 37. Core Network Topology. ...................................................................................................................... 99 

Figure 38. UMF Axes of Requirements................................................................................................................ 100 

Figure 39. UMF Requirements Synthesis ............................................................................................................ 100 

Figure 40. New Management Functionality for Future Networks ...................................................................... 103 

Figure 41. SID Policy Domain. ............................................................................................................................. 112 

Figure 42. Level Two of the Policy Domain of the SID Framework. .................................................................... 112 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 8 

Figure 43. Representation of a PolicyRule. ......................................................................................................... 113 

Figure 44. Policy Set. ........................................................................................................................................... 114 

Figure 45. Policy Events and Policy Sets. ............................................................................................................. 114 

Figure 46. Policy Statement. ............................................................................................................................... 115 

Figure 47. Policy Condition. ................................................................................................................................ 116 

Figure 48. Policy Action. ...................................................................................................................................... 116 

Figure 49. Policy Application simplified view. ..................................................................................................... 117 

Figure 50. Anatomy of a Policy Server. ............................................................................................................... 117 

Figure 51. Using Policy and PartyRoles to Manage Resources and Services....................................................... 118 

Figure 52. Information model of DEN-ng Context .............................................................................................. 119 

Figure 53. Information model of Service package bundle .................................................................................. 119 

Figure 54. Information model of Service Performance ....................................................................................... 120 

Figure 55. UMF Information flow ........................................................................................................................ 123 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 9 

Foreword 
Deliverable D2.2 provides a first complete functional specification of the UMF (Unified Management 
Framework) of the UniverSelf project, which comprises the detailed description of the Network Empowerment 
Mechanism (NEM) as a concept, the specification of the core UMF components and the relevant interfaces, 
and the possible mechanisms that can support the main functions of the core blocks. 

According to the project lifecycle, the prioritized requirements prescribed in work package 4 are transferred to 
work package 2 to guide the specification of the Unified Management Framework (UMF). Work package 2 aims 
at a UMF specification in terms of identification of the required functional modules for the UMF, its interfaces 
and models, which also addresses the requirements deriving from the use cases handled by the project.  

The UMF design is developed across three documents; each one corresponding to one UMF release, namely 
deliverable D2.1 (UMF release 1, published in July 2011), deliverable D2.2 (UMF release 2, published in October 
2012) and deliverable D2.4 (UMF release 3, scheduled for May 2013). The scope of these deliverables, which is 
in line with the Description of Work and also reveals what each UMF release addresses, is as follows: 

D2.1 ς UMF Specifications ς Release 1: The deliverable features a first description of the UMF design. It 
describes the foundation (requirements, objectives and approach) for achieving the target of embodying 
autonomic paradigms in any type of network and services, spanning widely different technological contexts, 
and providing to operators a service-oriented abstraction of the network they are operating. Deliverable D2.1 
elaborates on the fundamental elements for achieving a network agnostic management of services, embedding 
advanced service and network management intelligence, and federating the management of multiple 
networks, hence, bridging wireless, wireline, access, core, services, etc. The fundamental elements include 
governance, information management, and feature embodiment (comprising the cognitive part) functions. This 
UMF core functions are designed with flexibility in mind to accommodate different networking scenarios and 
use cases in a consistent manner. It also addresses requirements deriving from the first burst of the project 
selected use cases. Emphasis is placed in compatibility with existing and emerging industry standards, the 
incorporation of recent autonomic networking research results, and in achieving a future-proof design.  In 
particular, the UMF release 1 focuses on the identification of the common functional groups and their 
interfaces; the possible organization and cooperation modes between UMF elements and domains; it includes 
a system view of the UMF which consist of the introduction of a number of specialized logical nodes and of a 
possible hierarchical structure, a discussion on orchestration issues, as well as a mapping of the identified 
functional blocks into these nodes and the elaboration on their functionalities and interfaces among them. The 
positioning and mapping of the UMF (and of its components and interfaces) onto deployed and standardized 
control and management architectures, which is an essential aspect for the industrial impact, is initiated in this 
document and will be further progressed in the next releases. 

D2.2 ς UMF Specifications ς Release 2: The deliverable is a first complete functional specification of the UMF as 
ŘŜǊƛǾŜŘ ŦǊƻƳ ǘƘŜ άōƻǘǘƻƳ-ǳǇ ǊŜǉǳƛǊŜƳŜƴǘǎέ ǎȅƴƻƴȅƳƻǳǎ ƻŦ 6 use case problem specific requirements 
ŀŘŘǊŜǎǎƛƴƎ ƻǇŜǊŀǘƻǊǎΩ Řŀȅ-to-day problems identified in live networks and on existing service/network 
ŀǊŎƘƛǘŜŎǘǳǊŜǎΤ ǘƘŜ άǘƻǇ-Řƻǿƴ ǊŜǉǳƛǊŜƳŜƴǘǎέ ǎȅƴƻƴȅƳƻǳǎ ƻŦ ƘƛƎƘ-level functions, functional blocks and 
ƛƴǘŜǊŦŀŎŜǎ ŀƴŘ άƘƻǊƛȊƻƴǘŀƭ ǊŜǉǳƛǊŜƳŜƴǘǎέ ǎȅƴƻƴȅƳƻǳǎ of a reposition of TMN FCAPS towards the management 
functions of Future Networks. A key characteristic for effective Network Empowerment MŜŎƘŀƴƛǎƳǎΩ 
deployment is based on the management framework ability to govern, orchestrate/coordinate NEMs' 
behaviour and facilitate the information/knowledge sharing among them. These demands lead to the need for 
a thorough description of the three enabling core UMF components: Governance, Knowledge and 
Coordination. These components incorporate key functions of the specified Functional Blocks in the first UMF 
release with enhancements driven by autonomic system mechanisms.  In this context, UMF Specifications ς 
Release 2 focuses on the specification of NEM definition and design, which is used then in the full description 
ƻŦ b9aΩǎ lifecycle, the specification of UMF core components and their interaction/interfaces, as well as, the 
identification of necessary mechanisms to support the main functions of the core blocks and achieve their 
objectives. Furthermore, the UMF information model is defined by refining and extending the TMF information 
framework (i.e. SID) patterns, allowing information sharing across different layers, administrative domains and 
network segments. The opportunities for contributions and actions in various standardization bodies/groups, 
which is a prerequisite for industry adoption, is presented in the deliverable 2.2 (UMF Release 2). Furthermore, 
the deliverable presents as an example of the UMF realization the UC6 of operator-governed, end-to-end, 
autonomic, joint network and service management. 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 10 

D2.4 ς UMF Design ς Release 3: This version of the UMF will accommodate requirements from all use cases 
handled by the project and will incorporate corresponding network empowerment solutions for Future 
Networks as applicable to the overall networking infrastructure, spanning wireless and wireline, as well as 
access, core and service segments. Emphasis will be placed on the project-wide harmonization and 
consolidation of the UMF components (core components and NEMs) and on the system architecture 
assurances that would make UMF ready for deployment with a migration path. Deliverable D2.4 will provide 
the latest developments on the federation of management systems, model driven specifications, the 
information and knowledge management functionality and the context awareness patterns, the continuum of 
governance tools (cross-referencing, where appropriate, the deliverable D2.3) and the intelligence 
embodiment mechanisms. In addition to previous UMF releases, UMF Release 3 will focus on the complete 
description of the intelligence embodiment and network empowerment integration in the UMF and the 
network and service infrastructure; the definition of migration and deployment strategies. The document will 
report on the contributions to the standardization process and certification activities. 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 11 

1 Introduction 
The Unified Management Framework (UMF), which is developed in the UniverSelf project, is an innovative 
management framework that aims to solve actual network problems and address the growing management 
complexity of the highly decentralized and dynamic environment of resources and systems in Future Internet. 
The novel characteristics are achieved through the smooth and trustworthy embodiment and empowerment of 
autonomic principles and techniques in both services and networks.  

The Network Empowerment Mechanisms (NEMs), which are introduced in the context of UMF, encapsulate 
autonomic functions (closed control loops/algorithms) that can be embedded into legacy and future 
networking systems and services ƛƴ ŀ άǇƭǳƎ ŀƴŘ ǇƭŀȅέκέǳƴǇƭǳƎ ŀƴŘ Ǉƭŀȅέ way. Consequently, the UMF shall 
enable trustworthy integration and interworking of NEMs within the operator's management UMF ability to 
govern, orchestrate/coordinate different NEMs' behaviour and facilitate the information/knowledge sharing 
among them. These demands led to the introduction of UMF core, which consists of three enabling 
components, Governance (GOV), Knowledge (KNOW) and Coordination (COORD). These components 
incorporate key functions of the specified Functional Blocks in the first UMF release, enhanced by respective 
proper mechanisms. Therefore, the realization of UMF necessitates the specification of these components and 
their interaction/interfaces between them and with NEMs.  

The main goal of this deliverable is to provide a first complete functional specification of the UMF, regarding 
the NEMs, the UMF core blocks and the relevant interfaces. Deliverable D2.2 shall be considered as the second 
release of the UMF. The prioritization dictated by the QFD analysis in Deliverable 4.2 was taken into 
consideration, ensuring that the respective prioritized requirements were addressed in this UMF release. 
Moreover, ǘƘŜ ǊŜǉǳƛǊŜƳŜƴǘǎκŎƘŀƭƭŜƴƎŜǎ ǘƘŀǘ ŀǊƻǎŜ ŦǊƻƳ άōƻǘǘƻƳ-ǳǇέ (requirements derived by the set of use 
cases) ŀƴŘ άǘƻǇ-Řƻǿƴέ  (Unification & Federation, Governance, Embodiment/Network Empowerment, Service 
orientation, Automation/Autonomicity/Self-x and Orchestration/Coordination) methodologies of the design 
approach and the analysis of the state-of-the-art with respect to autonomic management/networking 
architectures/frameworks ŀƴŘ άƘƻǊƛȊƻƴǘŀƭ ǊŜǉǳƛǊŜƳŜƴǘǎέ όǎȅƴƻƴȅƳƻǳǎ ƻŦ ŀ ǊŜǇƻǎƛǘƛƻƴ ƻŦ ¢ab C/!t{ ǘƻǿŀǊŘǎ 
the management functions of Future Networks), were addressed in this UMF release. This release will be 
complemented by the next/final release, which will be an evolved and detailed UMF specification, 
consolidating the developments of this release.  

The document is structured as follow: Section 2 outlines the UMF functional decomposition and concisely 
presents the main respective components. Section 3 presents the specifications of UMF core components and 
NEMs, regarding their functions and their corresponding operations, as well as the relevant interfaces. Section 
4 presents functional mechanisms that enable the realization of UMF core functionalities. Section 5 gives a 
clear view of possible opportunities for contributions and actions in various standardization bodies/groups, 
which is a prerequisite for industry adoption. Section 6 describes the UMF realization for the UC6 of operator-
governed, end-to-end, autonomic, joint network and service management, as an illustrative example of UMF 
operation in practice. Section 7 presents how the requirements/challenges that aǊƻǎŜ ŦǊƻƳ άōƻǘǘƻƳ-ǳǇέ, άǘƻǇ-
Řƻǿƴέ ŀƴŘ άƘƻǊƛȊƻƴǘŀƭέ methodologies of the design approach and the analysis of the state-of-the-art with 
respect to autonomic management/networking architectures/frameworks were addressed in this UMF release, 
along with the implied choices.  Section 8 concludes the deliverable by summarising the outcomes of this 
second release and by elaborating on the next steps. Finally, a number of annexes provides additional 
information for several aspects of UMF as follows: Annex A provides a concise description of Restful UMF API; 
and Annex B provides definition of the data, the terms and the models that were utilized in the deliverable. 
References, Abbreviations and Definitions Sections are completing this document. 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 12 

2 UMF overview 
The rationale behind autonomics is to enable efficient and cost-effective management of networks and service 
infrastructures for network operators and service providers. To this end, the management and operation tasks 
are achieved through optimized autonomic functions, where each function is designed with a specific purpose: 
an operational problem to be solved, a performance objective to be achieved and a network segment or 
service infrastructure to be targeted. In order to highlight the role and importance of these functions, we 
introduce the concept of: Network Empowerment Mechanisms (NEM). A NEM encapsulates as a management 
application a self management function, basically a control loop or an autonomic algorithm/method. As such, 
the design scheme behind each NEM can be outlined as follows: use the relevant autonomic method to solve a 
concrete operational problem in a specific legacy networking environment or in future networks. NEM = 
method + objective + context (this definition will be further elaborated and augmented later). As examples of 
this triple, we can cite: 

 Use of Bayesian inference (the method) for fault diagnosis (the objective) in FTTH environments (the 
context), or 

 Use of genetic algorithm (the method) for interference coordination (the objective) in LTE networks 
(the context), 

 Χ CǳǊǘƘŜǊ ŜȄŀƳǇƭŜǎ Ŏŀƴ ōŜ ŦƻǳƴŘ ƛƴ ²tо ŘŜƭƛǾŜǊŀōƭŜǎΦ 
 
This scheme relays on the usual research approach: identify a problem within a specific context and then 
find/design the relevant method to address it ŀǎ ǘƘŜ ōŀǎƛǎ ƻŦ b9aΩǎ ƛƳplementation. However, when we have 
to address the actual deployment of a NEM within a carrier-grade environment, further functional and non-
functional requirements come into play. This introduces the main role of the UMF, which can be characterized 
by the following objectives: to enable a seamless integration and expandability (άplug & playέ ŀƴŘ άǳƴǇƭǳƎ ŀƴŘ 
Ǉƭŀȅέ) as well as to ensure a trustworthy interworking of NEMs within an operator's management ecosystem. 
To this end, we need: 

 Lifecycle tools to deploy, drive and track activity of NEMs. 

 Systemic tools to identify/avoid conflicts, and to ensure stability and performance when several NEMs 
are concurrently working. 

 Tools to make NEMs find, formulate and share relevant information to enable or improve their 
functioning. 

 
Three UMF challenging supporting functions for all NEMs are realising the above: governance, coordination and 
knowledge management. As a consequence, we introduce the concept of UMF core blocks in order to embody 
these functionalities that should be offered in a UMF ecosystem. Figure 1(a) puts in the same picture all the 
components at play: the three UMF core blocks (governance, coordination and knowledge), the NEMs and the 
network/service elements (managed elements); while Figure 1(b) presents (just as illustrative examples) the 
potential interactions between these components. To summarize, the NEMs are responsible for operating and 
managing the network and service infrastructures, while the UMF core blocks are responsible of managing and 
supporting the NEMs. 
 
UMF is providing then the set of functional specifications that will make this integrated picture a reality, hence 
focusing on: the functional decomposition of the UMF core blocks, the requirements on the NEM structure and 
behaviour, the interfaces specification, as well as the workflows. The main scope of this document is to present 
and explain this specification work. 
 
 
 
 
 
 
 
 
 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 13 

 
 

 

(a) 

 

(b) 

 

Figure 1. UMF overview and decomposition. 

 

NEM_x
NEM_y

GOVERNANCE COORDINATION KNOWLEDGE

network
element

adaptor

UMF CORE

FB FB

FB FB

method

i1

i2

i3

i5
i4 i6

i7



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 14 

3 UMF functional specifications 

3.1 Network Empowerment Mechanism (NEM)  
First, it is important to provide a comprehensive definition of the NEM concept based on the elements and 
discussion presented in the previous section (UMF overview): 

NEM = A functional grouping of objŜŎǘƛǾŜόǎύ Ҍ ŎƻƴǘŜȄǘ Ҍ ƳŜǘƘƻŘόǎύ ǿƘŜǊŜ άƳŜǘƘƻŘέ ƛǎ ŀ ƎŜƴŜǊŀƭ ǇǊƻŎŜŘǳǊŜ ŦƻǊ 
solving a problem. A NEM is (a priori) implemented as a piece of software that can be deployed in a (part of a) 
network to enhance/simplify its control and management (e.g. take over some operations). An intrinsic 
capability of a NEM is to be deployable and interoperable in a UMF context (e.g. an UMF compliant network). 

 

Indeed, one of the key characteristic of UMF is to allow seamless deployment and trustworthy interworking of 
multiple/independent autonomic functions that will (each) ease the life of network operators. Hence NEMs can 
be developed by any actor of the telecommunication/networking market: equipment vendor, network 
management system vendor, network operator, software developers, etc. For a given NEM, the actor, who 
developed it, is hereafter named NEM developer.  

The NEM-related specifications describe the constraints imposed by the UMF to any NEM. Hence a NEM 
developer will make sure the software being developed complies with these specifications in order to 
guarantee that the developed NEM is compliant with system instance of the UMF (i.e. deployable and 
interoperable in a UMF context). 

 

In this context, and in order to understand the specification work related to NEMs, it is required to distinguish 
between the following concepts: 

The specifications of NEMs, which constrain the behaviour of NEMs and define the generic part of their 
interfaces with UMF elements, 

A NEM class is a piece of software that contains the logic achieving a specific autonomic function. Such class is 
deployed in a network running a UMF system and requires being instantiated on a set of concrete network 
elements to effectively perform its autonomic function, 

An instance of a given NEM class allows performing a given autonomic function onto a given sub-set of a 
network. This is achieved by binding the code of a NEM class to a set of identified network 
resources/equipments. This NEM instance is identified by an instance ID and its unique interface with the UMF. 
This NEM instance at any given time is handling a set of identified network resources (this set can evolve with 
time). Hence there may be multiple instances of a given NEM class inside the same network e.g. one per area). 
A NEM instance is created by the UMF system in which it is being deployed. Moreover, a NEM instance is 
managed by the UMF system as an atomic entity, while its internal functioning can rely on separated piece of 
software running on different equipments, hence atomic NEMs are distinguishable from composite NEMs. 
During runtime, the distinction between these two cases is minor (limited to some more flexibility for a 
composite NEM regarding the flow of information), while regarding the instantiation of NEMs, the composite 
NEMs are stressing more importantly the process than atomic ones.  

 

Accordingly, distinguishing between the following machine-readable descriptions of the above concepts is also 
required: 

 A given NEM manifest describes a given NEM class. This description provides guidance to the network 
operator in order to install and configure an instance of this NEM class ς the goal of a NEM manifest is 
similar to a datasheet). This description is issued by the NEM designer towards network operators, 

 The grammar of a NEM manifest is a subset of UMF specifications describing which information MUST 
and MAY be provided by the NEM developers in order to describe their NEM class and guide its 
instantiation, 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 15 

 A given NEM instance description describes a given instance of a given NEM class. This description is 
issued by the NEM instance towards UMF system. This description is used for registration of the NEM. 
It tells which information is monitored and which actions are taken. 

The grammar of a NEM instance description, which is a subset of UMF specifications describing which 
information MUST and MAY be provided by the NEM instance when starting (and when its settings are 
changed) so as to register to the UMF system the: 

 Capabilities of this NEM instance regarding information/knowledge sharing, 

 Requirements of this NEM instance regarding knowledge inputs, 

 Conflicts of this NEM instance with already running NEM instances of any NEM class, 

A NEM mandate is issued by the UMF system to a NEM instance. This NEM Mandate is a set of instructions 
telling which equipments MUST be handled by this NEM instance and which settings this NEM instance MUST 
work with, 

The format of the NEM mandate is a subset of UMF specifications describing which information MUST and 
MAY be provided by the UMF system to the NEM. 

 

To illustrŀǘŜ ǘƘŜ ǇǊŜǾƛƻǳǎ ŘŜŦƛƴƛǘƛƻƴǎΣ ƭŜǘΩǎ ǎƪŜǘŎƘ ŀ ǾŜǊȅ ǎƛƳǇƭƛŦƛŜŘ ǇǊƻŎŜǎǎ ǳǎŜŘ ǘƻ ǎǘŀǊǘ ŀƴ ŀǳǘƻƴƻƳƛŎ ŦǳƴŎǘƛƻƴ 
(coming as a NEM class) inside a UMF system. First, somehow, the software corresponding to the NEM class is 
being installed on the relevant machines/equipments (helped in this by the indications available in the NEM 
Manifest). Second, the UMF is sending to this software the mandate to create a given NEM instance, which 
process is completed by a NEM instance ready to register. Third, this NEM instance is sending its instance 
description to the UMF system in order to complete registration. Once the registration is successfully 
completed, the NEM instance is ready to start upon command from the UMF. This process is part of what we 
call the NEM lifecycle.  

 

This subsection provides a detailed specification of all these concepts. First we present the lifecycle of a NEM 
instance with respect to UMF-compliant systems. Then, we present the information model of NEMs. Finally, we 
detail the different phases of the lifecycle and the different NEM state descriptions associated to them.  

3.1.1 Life-cycle of a NEM instance 

A NEM from the moment that it is installed until the moment that it is uninstalled is following a given life-cycle, 
which is specified below. Alike the life-cycle defined in OSGi for bundles, the NEM life-cycle describes the way a 
NEM instance can be dynamically instantiated, started, activated, halted and stopped. A simplified version of 
the NEM life-cycle and its different phases are presented in Figure 2.  



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 16 

 

Figure 2. Simplified NEM instance life-cycle. 

The NEM life-cycle consists of the following phases: 

ω Prior to the set-up of a NEM, when it does not exist as an instance yet, the corresponding piece(s) of 
software is (are) merely being installed on relevant machines, which may be used to create one or 
more NEM instances. 

ω VOID INSTANTIATED: In this first state, the NEM exits as an instance. This state is mandatory, for a 
NEM instance to handle a MANDATE. The MANDATE is issued by the UMF system and determines the 
network resources that will be managed by this instance. The MANDATE also defines the configuration 
options

1
 applicable to this instance.  

ω READY: In this state the NEM instance is fully deployed but not yet operating; the appropriate pieces 
of software are activated on the corresponding network element and assigned to the network 
resources described in the MANDATE. In this state the NEM instance is also registered to the UMF 
core mechanisms (GOV, COORD & KNOW). All the dependencies of the NEM instance in terms of 
required input information (KNOW) and needed relations with other NEMs instances are identified. As 
a conclusion in this state, the NEM instance is known to the UMF. 

ω OPERATIONAL: In this state the NEM instance is operational and works under the control of COORD 
which is allow to set the working regime of the running instance on one of the following options: 

o achieve or not all or a part of its acquisition of information, 

o update its learning,  

o run or not its decision process,  

o share or not all or a part of its knowledge,  

o enforce or not all or a part of its actions.  

 The life-cycle above presents a high view of the states of a NEM. The following figure details the transitional 
phases, to provide a more complete NEM life-cycle. 

                                                                 
1
 e.g. policies or constraints on behavior. 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 17 

 

Figure 3. Detailed NEM instance life-cycle (with transitions). 

When being created a NEM instance reaches a specific sub-state of INSTANTIATED that is named VOID 
INSTANTIATED. In this sub-state, the NEM instance is actually affected no MANDATE yet. The request named 
CreateNEWinstance issued by GOV to create this new instance contains a unique instance ID, which will be 
referred all along the NEM life. The reception of this request by the NEM instance will provide a temporary 
management interface for the instance. The newly created instance will listen to this interface in order to 
receive a MANDATE. 

On reception of a MANDATE (from GOV), the NEM instance will organize itself to both handle the network 
resources and perform its mission (DEPLOYING trans-state). Once the deployment is completed, the NEM will 
achieve registration (REGISTERING trans-state), during which exchanges with GOV, COORD and KNOW will 
register the NEM instance. Once the registration is completed, the NEM instance is on the READY state. 

On reception of a SetUp command (from GOV), the NEM instance will notify COORD of it and then move to the 
OPERATIONAL state. 

On reception of a SetDown (from GOV), the NEM instance will abruptly stop all its processes, and then go back 
to the READY state.    

Finally, the UPDATING trans-state is a state that is reached any time a REGISTERED
2
 NEM instance receives an 

UPDATED MANDATE (from GOV). The NEM instance will get back to DEPLOYING. 

On reception of a REVOKE (from GOV), the NEM instance will reach the VOID INSTANCE sub-state, , going 
through the UNREGISTERING and UNDEPLOYING states, which means all the software components involved in 
the NEM instance will be deactivated apart the main component. The NEM instance should be in the READY 
state to handle a REVOKE. 

On reception of a DELETE (from GOV) the NEM instance will disappear from the UMF system. The NEM 
instance should be in the VOID INSTANTIATED state to handle a DELETE.  

This NEM life-cycle has been designed after state of the art studies (e.g. OSGi and SOAP) and analysis of MS26 
(Unification of the mechanisms embedding the UC methods) material and extended to cover the specificities 

                                                                 
2
 actually a NEM instance, which has completed the deploying phase 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 18 

related to deployment of functions over distributed systems, knowing these functions can themselves be 
distributed. The following sub-sections describes the initial phase of the lifecycle (NEM Manifest, NEM 
Installation), the NEM Instantiation to reach the VOID INSTANTIATED state, the NEM Mandate to reach the 
READY state and the NEM Instance Description to reach the OPERATIONAL state. Finally, the detailed 
operations to transit from one state to another are presented at the end. 

3.1.2 Information model of NEMs 

 

Figure 4. Inheritance of UMF information model from SID (NEM part). 

Figure 4 depicts the SID root diagram from which we derive the NEM concepts. The RootEntity class defines the 
necessary attributes that are common to define/select SID entities in the domain of service, resources as well 
as Policy entities. The commonName attribute enables users of the SID to refer to an object using terminology 
defined by their application-specific needs. The description attribute is an optional attribute that enables users 
of the SID to customize the description of a SID object.  The objectID attribute provides a unique identity to 
each entity. The abstract class Entity extends the RootEntity class and represents the entities those play a 
business function [30]. 

b9a ƛǎ ŘŜŦƛƴŜŘ ŀǎ ŀƴ ŀōǎǘǊŀŎǘ Ŏƭŀǎǎ ŀƴŘ ŜȄǘŜƴŘǎ ǘƘŜ Ŏƭŀǎǎ 9ƴǘƛǘȅΦ  ¢ƘŜ άƳŀƴŀƎŜǎέ ŀǎǎƻŎƛŀǘƛƻƴ ǎƘƻǿǎ ǘƘŜ ƭƛƴƪ ǘƻ 
the set of ManagedEntity managed by a given NEM.   

The NEM policy is extending the SID policy class. It defines the set of policies that are applicable to a given 
NEM.  

Following the specification pattern from the SID, NEM and NEMPolicy classes have respectively classes for 
NEMSpecification and NEMPolicySpecification. The specification classes describe the invariant part/information 
of the entity, which enables the construction of an Entity.  

 

 class NEMLinkedToSID

Root Business Entities ABE::Entity

+ version:  string

Root Business Entities ABE::

ManagedEntity

+ managementMethodCurrent:  int

+ managementMethodSupported:  int

Resource ABE::Resource

+ usageState:  int

ManagementAction

NEM

+ managedResource:  List<URI>

+ regime:  Regime

+ state:  NEMStates

+ url:  URL

ManagedEntitySpecification

ManagementActionSpecification

+ contentType:  Class

+ controlFlexibil ity:  Enum

+ descriptor:  String

NEMSpecification

+ atomicLoop:  Boolean

+ id:  NEMSpecID

+ isComposite:  Boolean

+ manageableEntities:  List<ManagedEntitySpecification>

+ possibleHost:  List<OS>

+ releaseDate:  Date

NEMpolicy

Root Business Entities 

ABE::RootEntity

+ commonName:  string

+ description:  string

+ objectID:  string

Root Business 

Entities ABE::

Policy

Root Business Entities 

ABE::Specification

specifiedBy

manages

advertises

1

specifiedBy

1..*

applies



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 19 

 

Figure 5. Representing the NEM structure in an information model view. 

Figure 5 represents the structure of NEM. To start with a NEM is being specified by the attributes grouped in a 
NEMSpecification. Hence a NEM Manifest is merely an xml file detailing the values for all these attributes. One 
ƻŦ ǘƘŜ b9a{ǇŜŎ/ƘŀǊŀŎǘŜǊƛǎǘƛŎǎ ƛǎ ǘƘŜ b9aǎǇŜŎL5Σ ǿƘƛŎƘ ŀƭƭƻǿǎ ŀ ǳƴƛǉǳŜ ƛŘŜƴǘƛŦƛŎŀǘƛƻƴ ƻŦ ǘƘŜ άb9a Ŏƭŀǎǎέ ƛƴ ǘƘŜ 
catalogue as it regroups 3 attributes, which are name, provider and version. ! άb9a ƛƴǎǘŀƴŎŜέ ƛǎ an object of 
type NEM

3
 exposing a management interface to be controlled by the UMF. ! άb9a ƛƴǎǘŀƴŎŜέ ƛǎ ŜƛǘƘŜǊ ŀǘƻƳƛŎ 

or composite. An atomic instance of a NEM has centralized software, and runs on a single machine, while a 
composite instance of a NEM has distributed software, and runs on more than one machine. This concept is 
slightly different from the SID pattern as the NEMComposite is not composed of multiple NEMs but of multiple 
NEMComponents, and a NEMAtomic is composed of a single NEMComponent. The NEMMainComponent is the 
one handling the control tasks of the whole NEM, meaning it is responsible for managing the relation with UMF 
Core Blocks and to ensure that the NEM instance as a whole is behaving accordingly to UMF instructions 

! άb9a ƛƴǎǘŀƴŎŜέ ƛǎ ƘŀǾƛƴƎ ŀǘǘǊƛōǳǘŜǎΣ ǿƘƛŎƘ ǾŀƭǳŜǎ ŀǊŜ ǇǊƻǾƛŘŜŘ ōȅ ŜƛǘƘŜǊΥ 

 The creation of the instance: Instance ID, 

 The Mandate: the managedResources (the list of equipments or resources or services managed by the 
άb9a ƛƴǎǘŀƴŎŜέΣ 

 tƻƭƛŎƛŜǎΥ ǘƘŜ ǊŜƎƛƳŜΣ ŜǘŎΧ 

 The functioning of the software of the NEM: the management interface and its URL, the 
NEMComponents and their KnowledgeExchangeInterfaces, which can be used to exchange 
information or knowledge with other UMF entities. 

 

                                                                 
3
 An instanciation of the class NEM, here class refering to the class in the Information Model 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 20 

 

Figure 6. Information model of Policies regarding NEMs. 

Figure 6 is depicting the inheritance of Policies in the scope of NEMs. Actually the picture is hiding the 
inheritance of policies, as it is redundant with the inheritance of PolicySpecifications (which means that for 
each class of PolicySpecification there is a matching class of Policy). 

First of all, all the policies are inheriting from NEMPolicy. 

Then there are different types of policies: 

 GenericNEMPolicy is abstract, and represents all the kind of policies that are applicable to any NEM 
instance, for which the format is defined by the UMF specification. The exact format of these policies 
will be detailed in future releases of the UMF specifications. 

 RegimePolicies are sent by COORD to set the regime of the NEM instance. The regime corresponds to 
the frequency and the modalities at which the MAPE loop of the NEM is to be run. Examples of these 
could be: run once every 10min, run continuously, run now only once, run when such X condition is 
ǘǊǳŜΣ ŜǘŎΧ 

 ActionConstrainingPolicies are sent by COORD to set constraints on the actions taken by a NEM 
instance. The goal of this can be to avoid some conflicts by providing a freedom frame to the NEM in 
order to avoid overlaps with conflicting NEMs. The constraints can be either to disable some specific 
actions, or to suspend the enforcement of the planned action to a validation by COORD or to constrain 
the range in which a parameter can be set. The instance description of the NEM is used to determine 
which subset of rules can be applied by the NEM (e.g. some NEM may provide no flexibility regarding 
which actions can be disabled, hence this NEM exposes itself to be simply switched in a standby mode 
by COORD). 

 InformationExchangePolicies are sent by KNOW in order to organize an exchange of 
information/knowledge between UMF entities. When a NEM informs in its instance description that a 
given piece of information can be shared, while another NEM informs in its instance description that 
this same piece of information is needed to perform its analysis, then the role of KNOW is to organize 

 class NEMPolicy

Policy

NEMPolicySpecification

RegimePolicySpec

+ default:  String

+ defaultType:  String

+ rangeInterval:  String

+ unitOfMeasure:  string

+ validFor:  String

+ valueFrom:  String

+ valueTo:  String

GenericNEMpolicySpec

SpecificNEMpolicySpec

i t corresponds to 

configurationOptions

Policy

NEMpolicy

ReportingPolicySpec

ActionConstrainingPolicySpec

InformationExchangePolicySpec

Entity

NEM

+ managedResource:  List<URI>

+ regime:  Regime

+ state:  NEMStates

+ url:  URL

Specification

NEMSpecification

+ atomicLoop:  Boolean

+ id:  NEMSpecID

+ isComposite:  Boolean

+ manageableEntities:  List<ManagedEntitySpecification>

+ possibleHost:  List<OS>

+ releaseDate:  Date

1

specifiedBy

1..*

applies

1..

advertises

1..*



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 21 

the subscription of the second NEM to the first one. The first one will not answer positively to any 
demand if KNOW did not previously organize this flow by setting appropriate 
InformationExchangePolicy (see workflows in section 3.3.4 Information Flow Establishment and 
Optimisation function). 

 ReportingPolicies are specific InformationExchangePolicies sent by GOV to set the rules of reporting of 
information from the NEM instance towards GOV.  

 SpecificNEMPolicies are policies, which are specific to a given NEM class. They are likely to tailor the 
behavior of the NEM regarding the objectives of a NEM. E.g. such a policy can be for a traffic 
engineering NEM a policy to set whether the objective of the traffic engineering is to save energy 
consumption or to avoid contention. The format of such policies is not provided by the UMF, as each 
NEM will have its specific. The UMF will provide a meta format, for the NEM to provide in 
NEMSpecificPolicySpecifications the specific format of its actual SpecificPolicies. These 
NEMSpecificPolicySpecifications are being advertised in the NEM Manifest.  

 

 

Figure 7. Information model of Information and Knowledge regarding NEMs. 

Figure 7 depicts the inheritance of Information in the scope of the UMF in general and in the scope of NEMs 
more specifically. UMFInformation objects are exchanged between UMF through one of the Knowledge 
Exchange workflow (see workflows in section 3.3.4 Information Flow Establishment and Optimisation function). 
A NEM can be at one or the two endpoints of such an exchange. 

Figure 7 depicts three levels regarding information: 

1. ManagementInformationSpecification: This level depicts the nŀǘǳǊŜ ƻŦ ǘƘŜ ƛƴŦƻǊƳŀǘƛƻƴΣ ŜΦƎΦ ά[ƻŀŘ ƻŦ 
ƭƛƴƪ όƛƴ .ƛǘκǎύέΦ ¢Ƙƛǎ Ŏƭŀǎǎ ƻŦ ǘƘŜ ƛƴŦƻǊƳŀǘƛƻƴ ƳƻŘŜƭ ƛǎ ǳǎŜŘ ǘƻ ōǳƛƭŘ Ŏatalogues of information E.g. The 
list of the nature of all the information acquired by a given class of NEM, which corresponds to the 
Acquired_Inputs field of the NEM Manifest (see section 3.1.3), similarly for the following fields of the 
Manifest: Optional_External_Input, Mandatory_External_Input and Available Outputs.  
A NEM agnostic catalogue should be built to fill an ontology describing the relations between the 
different entitiŜǎ ƻŦ ǘƘŜ ƴŜǘǿƻǊƪΦ ¢Ƙƛǎ ƻƴǘƻƭƻƎȅ ŎƻǳƭŘ ŘŜǎŎǊƛōŜ ǘƘŀǘ άƭƻŀŘ ƻŦ ƭƛƴƪ όƛƴ ҈ύέ ƛǎ ǊŜƭŀǘŜŘ ǘƻ 
άƭƛƴƪ ŎŀǇŀŎƛǘȅέ ǿƘƛŎƘ ƛǎ ǘƘŜ άǎǳƳέ ƻŦ άǇƻǊǘǎ ŎŀǇŀŎƛǘȅέ άŎƻƳǇƻǎƛƴƎέ ǘƘŜ άƭƛƴƪέΦ ¢Ƙƛǎ ƻƴǘƻƭƻƎȅ ǿƻǳƭŘ be 
used to help COORD identify conflicts between NEMs. The ontology should stay at the level of the 
ManagementInformationSpec. 

 class NEMInformation

Entity

Root Business Entities ABE::

ManagementInfo

+ mgmtInfoValidFor:  TimePeriod

+ retrievalMethodCurrent:  int

+ retrievalMethodsSupported:  string

Entity

NEM

+ managedResource:  List<URI>

+ regime:  Regime

+ state:  NEMStates

+ url:  URL

UMFInformation

+ content:  ManagementInfo

+ isAggregated:  boolean

+ isAggregationNeeded:  boolean

+ monitoringFrequency:  int

+ typeOfMonitoringInformation:  String

UMFInformationSpecification

+ contentType:  ManagementInfo

+ context:  Context

+ name:  int

Specification

ManagementInfoSpecification

- contentType:  Class

- descriptor:  String

- informationUsage:  InformationUsage

- type:  InfoType

NEMinformationSpecification

- ID:  int

çenumerationè

InformationUsage

 ExternalMandatory

 Acquired

 Output

 ExternalOptional

Specification

NEMSpecification

+ atomicLoop:  Boolean

+ id:  NEMSpecID

+ isComposite:  Boolean

+ manageableEntities:  List<ManagedEntitySpecification>

+ possibleHost:  List<OS>

+ releaseDate:  Date

çenumeratio...

InfoType

 knowledge

 rawData

1

specifiedBy

1..*

has

specifiedBy

advertises

advertises/registers

SpecifiesNEMInformation

uses/provides



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 22 

2.  UMFInformationSpecification: This level designates ŜȄŀŎǘƭȅ ǘƘŜ ƛƴŦƻǊƳŀǘƛƻƴΣ ŜΦƎΦ ά¢ƘŜ ƭƻŀŘ ƻŦ ǘƘŜ ƭƛƴƪ 
between router 1.1.1.1 and router 2.2.2.2έΦ ¢Ƙƛǎ Ŏƭŀǎǎ ƻŦ ǘƘŜ ƛƴŦƻǊƳŀǘƛƻƴ ƳƻŘŜƭ ƛǎ ǳǎŜŘ ǘƻ ōǳƛƭŘ 
catalogues such as: 

 the indexation in KNOW of all the available outputs of every NEMs (used to perform the 
identification of the providing entity when organizing knowledge exchange with other UMF 
entities ς see workflows in section 3.3.4 Information Flow Establishment and Optimisation 
function), 

 the indexation in COORD of inputs of NEMs to identify conflicts with other NEMs, 

 Instance Description disclosed by NEM instances when registering (which are then indexed by 
COORD and KNOW ς see needs above), namely the Available_Outputs, 
Optional_External_Input, Mandatory_External_Input and Acquired_Inputs fields (see 
section 3.1.6). 

UMFInformationSpecification are extending the ManagementInfoSpecification with the context 
attribute (in the above example the designation of the link: router 1.1.1.1 to 2.2.2.2). The context class 
is taken from DEN-ng extensions disclosed in the following paper [1]. 

3.  UMFInformation: This class represents the information actually exchanged through a Knowledge 
Exchange Interface (see workflows in section 3.3.4 Information Flow Establishment and Optimisation 
function). For this exchange to happen KNOW takes in charge its organization, which will be 
materialized by an Information Policy (see Figure 6).  
This is a class inheriting from ManagementInformation (defined in SID) that is being specified by an 
UMFInformationSpecification. This is then a ManagementInformation enriched with a context (in 
order to know that the load which is 70% is actually referring to the link between router 1.1.1.1 and 
router 2.2.2.2.). The actual value is of any sub-class of ManagementInformation as defined in SID. The 
ManagementInformationSpecification is actually describing with its attribute contentType which sub-
class of ManagementInformation will be used to describe the value of the UMFInformation. 

 

 

Figure 8. Information model of Actions regarding NEMs. 

Figure 8 depicts the inheritance of Actions in the scope of the UMF in general and in the scope of NEMs more 
specifically. NEMActions are executed by NEMs onto ManagedEntities (resources or services). These 
correspond to the change in settings of the services or equipments that NEMs are performing. 

 class NEMAction

NEMSpecification

+ atomicLoop:  Boolean

+ id:  NEMSpecID

+ isComposite:  Boolean

+ manageableEntities:  List<ManagedEntitySpecification>

+ possibleHost:  List<OS>

+ releaseDate:  Date

NEM

+ managedResource:  List<URI>

+ regime:  Regime

+ state:  NEMStates

+ url:  URL

ManagementInfoSpecification

- contentType:  Class

- descriptor:  String

- informationUsage:  InformationUsage

- type:  InfoType

ManagementActionSpecification

+ contentType:  Class

+ controlFlexibil ity:  Enum

+ descriptor:  String

ManagementAction

NEMActionSpecification

-  controlStatus:  Enum

- target:  Context

NEMAction

+ actionValue

+ executionStatus:  String/Enum

+ executionTime:  Date

+ method:  ManagementMethodEntity

specifiedBy

advertises

1

specifiedBy

1..*

1..*

executes

1..*

specifies

*

advertises

*

advertises



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 23 

Specifically, it depicts three levels regarding the actions: 

1. aŀƴŀƎŜƳŜƴǘ!Ŏǘƛƻƴ{ǇŜŎƛŦƛŎŀǘƛƻƴΥ ¢Ƙƛǎ ƭŜǾŜƭ ŘŜǇƛŎǘǎ ǘƘŜ ƴŀǘǳǊŜ ƻŦ ǘƘŜ ŀŎǘƛƻƴΣ ŜΦƎΦ ά{ǿƛǘŎƘ ƻƴκƻŦŦ ŀ 
ǇƻǊǘέΦ ¢Ƙƛǎ Ŏƭŀǎǎ ƻŦ ǘƘŜ ƛƴŦƻǊƳŀǘƛƻƴ ƳƻŘŜƭ ƛǎ ǳǎŜŘ ǘƻ ōǳƛƭŘ Ŏatalogues of actions e.g. the list of the 
nature of all the actions potentially performed by a given class of NEM, which corresponds to the 
Possible_Actions field of the NEM Manifest (see section 3.1.3).  
A NEM agnostic catalogue should be also used to complete the ontology describing the relations 
between the different entitiŜǎ ƻŦ ǘƘŜ ƴŜǘǿƻǊƪΦ ¢Ƙƛǎ ƻƴǘƻƭƻƎȅ ŎƻǳƭŘ ŘŜǎŎǊƛōŜ ǘƘŀǘ άswitching on/off a 
portέ ƛǎ changing άƭƛƴƪ ŎŀǇŀŎƛǘȅέ if άportέ is άŎƻƳǇƻǎƛƴƎέ ǘƘŜ άƭƛƴƪέΦ 

2.  NEMActionSpecification: This level designates exactly the action, e.g. ά{ǿƛǘŎƘ ƻƴκƻŦŦ ǘƘŜ ǇƻǊǘ мн ƻŦ 
ǊƻǳǘŜǊ мΦмΦмΦмέΦ ¢Ƙƛǎ Ŏƭŀǎǎ ƻŦ ǘƘŜ ƛƴŦƻǊƳŀǘƛƻƴ ƳƻŘŜƭ ƛǎ ǳǎŜŘ ǘƻ ōǳƛƭŘ ŎŀǘŀƭƻƎǳŜǎ ǎǳŎƘ ŀǎΥ 

 the indexation in COORD of actions of NEMs to identify conflicts with other NEMs, 

 Instance Description disclosed by NEM instances when registering (which are then indexed by 
COORD and KNOW ς see needs above), namely the Possible_Actions field (see section 3.1.6). 

NEMActionSpecification are extending the ManagementActionSpecification with the context attribute 
(in the above example the designation of the port 12 of the router 1.1.1.1). Alike the 
UMFInformationSpecification, the context class is taken from DEN-ng extensions. 

3.  NEMAction: This class represents the action actually performed by the NEM. It then contains the 
value of the action, which in our above example can be either On or Off. The NEMActionSpecification 
describes (with its controlStatus attribute) which is the allowed control of this action, while the 
ManagementActionSpecification describes (with its controlFlexibility attribute) which are the allowed 
control of this kind of action (this property only depends on the flexibility offered by the NEM designer 
at implementation time). The usage of these control level are explained in section 3.1.8 b9aΩǎ 
Relations with Coordination. 

3.1.3 NEM Manifest 

A NEM class is being described by its Manifest, which is machine readable. This Manifest provides information 
(such as the type of network equipments that can be handled, the identification of the NEM class) for the 
operator to deploy the NEM in its infrastructure. This Manifest could be used: 

 as soon as a NEM is purchased, as it contains most of the technical details of the NEM, 

 when organizing the network management in order to determine the NEM deployment map, 

 at deployment time, in order to generate the Mandate that will be sent to the NEM instance, 

 any time during the life of a NEM instance. 

Table 1. Format of NEM Manifest 

Field Name Type Description 

ID NEM Spec ID To have a unique identifier of the NEM class 

Name String Name of the NEM class 

Provider ID String Name of the NEM developer (name of the company) 

Version Int[] Version of the NEM 

Release Date Date Date of release of the NEM 

Features  String Text field used to describe what is the feature achieved by 
the NEM 

User Guide URL URL Optional - Used to have a link onto a web server providing 
guidance for the use of the NEM 

Possible Hosts List<OS> Lists the OS on which the NEM (or more precisely the NEM 
Component) can be installed 

Manageable Entities List<Managed 
EntitySpecification> 

Lists the type of equipments/services that can be managed 
by the NEM 

Is Composite Boolean Depicts whether the NEM is atomic or composite 

Is Atomic Loop Boolean Depicts whether the algorithm of the NEM works as a single 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 24 

control loop or as a set of cooperating control loops. (This 
information makes sense in order to achieve joint 
optimization, then the NEM delegates its utility function to a 
UMF mechanism, in case a NEM is set to false there, then it 
will delegate a set of local utility functions). 

Acquired Inputs List<Management 
InfoSpecification> 

Lists the nature of information acquired by the NEM itself 

Optional External Inputs List<Management 
InfoSpecification> 

Lists the nature of information that the NEM should receive 
from KNOWLEDGE (directly or indirectly) 

Mandatory External 
Inputs 

List<Management 
InfoSpecification> 

Lists the nature of information that the NEM must receive 
from KNOWLEDGE (directly or indirectly) 

Available Outputs List<Management 
InfoSpecification> 

Lists the nature of information that can be provided by the 
NEM to any UMF entity. This list does not repeat what can 
be deduced from the other fields of the manifest, i.e. every 
acquired input can be shared.   

Possible Actions List<Management 
ActionSpecification> 

Lists the nature of actions that the NEM can apply onto the 
managed entities 

Configuration Options List<Specific 
NEMPolicySpec> 

Lists the configuration options that can be applied to the 
NEM. The NEM specific policies must be depicted here. 

Hereafter is an indicative example of the information which comprises a NEM Manifest, namely for the Green 
TE NEM. 

<eu.univerself.nem.Manifest>  
    <NEMspecID> 
        <Name>Green TE </Name>  
        <Provider> StylianosCorp </Provider>  
        <Version> 1.0.0 </Version>  
    </NEMspecID>  
    <Features> This NEM is achieving a Traffic Engineering function that is saving 

energy consumption of an IP network. It selects links and ports to be put  
into sleep based on traffic demand and link utilization/connectivity 
constraints. </Features>  

    <releaseDate> 2012 - 07- 23 11:25:32.647 UTC </releaseDate>  
    <UserGuideURL> www.stylianoscorp.com/support/GreenTE </UserGuideURL>    
    <isAtomicLoop> true </isAtom icLoop>  
    <isComposite> false </isComposite>  
    <PossibleHosts>  
        <OS>UnixOS </OS>  
    </PossibleHosts>  
    <ManageableEntities>  
        <ManagedEntitySpecification> ALU SAR7705</ManagedEntitySpecification>  
        <ManagedEntitySpecification> ALU 7710 </ManagedEntitySpecification>  
        <ManagedEntitySpecification> ALU SR7750 </ManagedEntitySpecification>  
        <ManagedEntitySpecification> Cisco CRS - 1</ManagedEntitySpecification>  
        <ManagedEntitySpecification> Cisco CRS - 2</ManagedEntitySpecificati on> 

<! ðRelatively to the tag <ManagedEntitySpecification> to be accurate there, 
this XML file is providing an id field of a ManagedEntitySpecification, this 
id field allowing to pick the proper managedentityspecification from the 
corresponding catalogue -- > 

    </ManageableEntities>  
    <AcquiredInputs>  

<! ðRelatively to the tag <ManagementInfoSpecification> for sake of 
readibility of the example, it is just a lightweight version that has been 
provided here, the full format contains attributes, which  are be ing 
described in the information model, namely  : descriptor, contentType, 

informationUsage and type -- > 
        <ManagementInfoSpecification  

contentType ="EthernetPortInfoSpecification" >Description of router 
port(ID, capacity) </ManagementInfoSpecification>  

        <ManagementInfoSpecification  
contentType ="IPInterfaceInfoSpecification" >Description of router 
interface (ID, capacity, List <Ports ID >, IP@) 
</ManagementInfoSpecification>  

        <ManagementInfoSpecification  contentType ="Numeric" >Load of router int erface 
</ManagementInfoSpecification>  

        <ManagementInfoSpecification  contentType ="List<LSA>" >Routing Table 
</ManagementInfoSpecification>  

    </AcquiredInputs>  



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 25 

    <OptionalExternalInputs>  
        <ManagementInfoSpecification  contentType ="Numeric" >Pr ediction of router 

interface load </ManagementInfoSpecification>  
    </OptionalExternalInputs>  
    <PossibleActions>  

<! ðRelatively to the tag <ManagementActionSpecification> for sake of 
readibility of the example, it is just a lightweight version that has been 
provided here, the full format contains attributes, which  are being 
described in the information model, namely  : descriptor, contentType, 
controlFelxibility -- > 

        <ManagementActionSpecification  contentType ="Boolean" >Switch ON/OFF Ethernet 
port </ManagementActionSpecification>  

        <ManagementActionSpecification  contentType ="Boolean" >Switch ON/OFF IP 
interface </ManagementActionSpecification>  

        <ManagementActionSpecification  contentType ="Numeric" >Change metric of IP 
interface </Managemen tActionSpecification>  

    </PossibleActions>  
    <ConfigurationOptions>  
        <SpecificNEMPolicy>   
            <name>GreenTimelyThreshold </name>  
            <description> Minimal time under which no - switchoff will occur 

</description>  
            <default Value> 15</defaultValue>  
        </SpecificNEMPolicy>  

<! -- This is just an example, as the internal format of these policies is not 
specified yet -- > 

    </ConfigurationOptions>  
</eu.univerself.nem.Manifest>  

3.1.4 NEM Installation and Instantiation 

The initial phase consists of installing the piece of code of a NEM onto the relevant hosts. At least 3 different 
scenarios can be considered for that: 

1. The code of the NEM is embedded inside the controller of a given type of network 
equipments/resources, 

2. The code of the NEM is manually
4
 copied by a network operator into hosts inside the network. The 

hosts can be servers or network equipments allowing uploads, 

3. The code of the NEM is copied into a specific GOV repository, from where it will be autonomously 
copied to the relevant hosts. 

The UMF release 2 is not specifying any of these installation scenarios, but the creation of a new NEM instance 
ƛǎ ǎǇŜŎƛŦƛŜŘ ƘŜǊŜŀŦǘŜǊΦ hƴŎŜ ōŜƛƴƎ ƛƴǎǘŀƭƭŜŘ ƻƴ ǘƘŜ ƘƻǎǘǎΣ ŀ ƪƛƴŘ ƻŦ άŎƻŘŜ ƭƻŀŘŜǊέ ǿƛƭƭ ǘŀƪŜ ǇŀǊǘ ƛƴ ǘƘŜ ŎǊŜŀǘƛƻƴ ƻŦ 
the instance as its role is to handle a CREATE NEW INSTANCE command from GOV and to load the required 
components of NEM. For this purpose: 

 A NEM MUST be provided with its code loader. 

 A code loader SHOULD be capable of creating more than one instance of a given NEM class. 

 A code loader MAY have the capability to load more than one class of NEMs (as long as GOV 
associates the code loader to each of these NEMs). 

 There MAY BE more than one code loader for a given NEM class. 

1. GOV MAY know more than one loader, 

2. Each loader MUST have the intrinsic capability to communicate with other loaders of the 
same NEM class, 

3. Each loader SHOULD be capable to communicate with any loader of this NEM class activated 
in the system covered by the same UMF, restrictions may come from: 

Á The structure of the communication infrastructure may block this communication, 

Á Lack of awareness of other loaders (installation of the loader does not impose an 
exhaustive knowledge of any other loaders of the same class, though this is 
preferred. 

                                                                 
4
 Manually, may mean either physically or remotely. 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 26 

 GOV MUST know (the interface of) at least one code loader of this NEM class in order to create a NEM 
instance of a given NEM class.  

 When receiving the NEW INSTANCE command, the code loader MUST create a VOID INSTANCE, which 
means: 

1. It MUST at least provide an answer to GOV indicating an interface on which GOV CAN send 
the NEM MANDATE,  

2. This interface MUST BE capable of handling a NEM MANDATE of this NEM class and MUST 
respond negatively to a NEM MANDATE of a different NEM class. 

A CREATE NEW INSTANCE message is actually a specific case of a NEM INSTANTIATION/DELETION message that 
follows the format described below: 

Table 2. Format of NEM INSTANTIATION/ DELETION message 

Field Name Type Description 

Class ID NEM Spec ID The identification of the NEM class 

Instance ID Integer The unique ID provided by the UMF to identify this NEM 
instance. 

Action ENUM This field is used to communicate the action that can be 
either: NEW INSTANCE or DELETE INSTANCE. 

¢ƘŜƴ ǘƘŜ άb9a ƭƻŀŘŜǊέ ƛǎ ǊŜǎǇƻƴŘƛƴƎ ǿƛǘƘ ŀ ƳŜǎǎŀƎŜ Ŧƻƭƭƻǿing the format below: 

Table 3. Format of NEM INSTANTIATION/DELETION response message 

Field Name Type Description 

Instance ID Integer The unique ID provided by the UMF to identify this NEM 
instance 

Result ENUM States whether the action was successful or not 

Management @ URI The address of the NEM Management interface, this field is 
optional, as it contains content only when the response is 
successfully answering to a NEW INSTANCE action  

3.1.5 NEM Mandate 

A NEM mandate is issued by the UMF system to a NEM instance. This NEM Mandate is a set of instructions 
telling which network equipments MUST be handled by this NEM instance and which settings this NEM 
instance MUST work with. 

Table 4. Format of NEM Mandate 

Field Name Type Description 

GOV@ URI To exchange with GOV UMF Block 

COORD@ URI To exchange with COORD UMF Block 

KNOW@ URI To exchange with KNOW UMF Block 

Managed Entities List<URI> Listing all the equipments/services that the NEM has to 
handle, monitor, optimize, etc... after being successfully 
deployed. 

Configuration Options List<Policy> Listing chosen values for generic or specific options  

Hereafter an indicative example of the information comprised in a NEM Mandate, namely for the creation of a 
Green TE NEM instance. 

<eu.univerself.nem.Mandate>  
    <Instance_ID> 356789456 </Instance_ID>  
    <GOV_address> 1.1.1.1 </GOV_address>  



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 27 

    <COORD_address>2.2.2.2 </COORD_address>  
    <KNOW_address>3.3.3.3 </KNOW_address>  
    <Instance_ID> 356789456 </Instance_ID>  
    <ManagedEquipments>  
        {127.100.50.1 , 127.100.50.5 , 127.100.50.15 , 127.100.50.19 , 

127.100.50.36}  
        <! -- The 3 first happen to be ALU SR7750 and the 2 last happen to be Cisco 

CSR- 1. -- > 
        <! -- This is a lightweight format to provide a list of URIs, this could 

alternatively be expressed as  
            <URI>127.100.50.1 </URI> etc...  
        -- > 
    </ManagedEquipments>      
    <Configuration_Options>  
        <SpecificNEMPolicy>   
            <name>GreenTimelyThreshold </name>  
            <value> 10</value>  
        </SpecificNEMPolicy>  
        <ReportingPolicy>  
            <ReportInterval> 30</ReportInterval>  
        </ReportingPolicy>  
        <! -- These are just examples, as the internal format of these policies are 

not specified yet -- > 
    </Configu ration_Options>  
</eu.univerself.nem.Mandate>  

The deployment of a NEM instance MUST happen accordingly to the MANDATE. When receiving the MANDATE 
the NEM instance is not even deployed. There may be more than one possible host for the code of the NEM, 
there may be multiple ones working together. 

Following what is depicted in the life-cycle of a NEM (see section 3.1.1), a NEM Mandate can be sent to a NEM 
instance, when: 

 The NEM Instance is void instantiated; then the MANDATE is enforced as being a completely new one. 

 The NEM instance is in the Ready state; then the previous MANDATE is updated with the content of 
this mandate. As this may imply redeploying and reregistering of the NEM, this operation cannot 
happen while a NEM may be actually working under the control of COORD, which prevents the update 
of a MANDATE in the Operational state. 

The MANDATE determines a list of network equipments. The installation phase had already determined a set of 
hosts capable of running a software component of the NEM class. The deployment of a given NEM instance 
corresponds to: 

 finding suitable hosts (machines to run the software component on and where the code loader can 
start the code), 

 activating in these hosts the software component(s), (role of the code loader) 

 associating to those a sub-set of the equipments, 

 additionally, federating these software components into a unique entity by the selection of a leader, 

This process may change the interface of the NEM, as it MUST be the interface of the leading software 
component. This new interface will be advertised through registration inside the instance description. 

3.1.6 NEM Instance Description 

A given NEM instance description describes a given instance of a given NEM class. This description is issued by 
the NEM instance towards the UMF system. This description is used for registration of the NEM. It tells which 
information is monitored and actions are taken by this specific NEM instance. 

 

 

 

 

 

 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 28 

Table 5. Format of NEM Instance Description 

Field Name Type Description 

Class ID NEM Spec ID The identification of the NEM class 

Instance ID Integer The unique ID provided by the UMF to identify this NEM 
instance. 

Management @ URI The address of the NEM Management interface. 

Acquired Inputs List<NEMInformation 
Specification> 

Lists the information acquired as inputs by the NEM 
instance (without the UMF system) 

Optional External Inputs List<NEMInformation 
Specification> 

Lists the information that the NEM instance should receive 
from KNOW (directly or indirectly)  

Mandatory External 
Inputs 

List<NEMInformation 
Specification> 

Lists the information that the NEM instance must receive 
from KNOW (directly or indirectly) 

Available Outputs List<NEMInformation 
Specification> 

Lists the information that the NEM instance can share with 
any other UMF entity. This list does not repeat what can 
be deduced from the other fields of the instance 
description, i.e. every acquired input can be shared.   

Possible Actions List<NEMAction 
Specification> 

Lists the actions that the NEM instance can apply 

Hereafter the reader can find an indicative example of the information comprised in an Instance Description, 
namely after the creation of the Green TE NEM instance that received the mandate example provided in 
section 3.1.5. 

<eu.univerself.nem.InstanceDescription > 
    <NEMspecID>  
        <Name>Green TE </Name>  
        <Provider> StylianosCorp </Provider>  
        <Version> 1.0.0 </Version>  
    </NEMspecID>  
    <Instance_ID> 356789456 </Instance_ID>  
    <AcquiredInputs>  
        <NEMInfoSpecification>  
            <descripto r> Description of router port(ID, capacity) </descriptor>  
            <contentType> EthernetPortInfo <! -- ID of a ManagementInfoSpec -- > 

</contentType>  
            <informationUsage> Acquired </informationUsage>  
            <type> RawInfo </type>  
            <contex t> {127.100.50.1//all , 127.100.50.5//all , 127.100.50.15//all , 

127.100.50.19//all , 127.100.50.36//all} </context>  
            <controlStatus> Enabled </controlStatus>  
        </NEMInfoSpecification>  
        <NEMInfoSpecification>  
            <descriptor> Description of router interface (ID, capacity, List <Ports 

ID >, IP@) </descriptor>  
            <contentType> IPInterfaceInfo <! -- ID of a ManagementInfoSpec -- > 

</contentType>  
            <informationUsage> Acquired </informationUsage>  
            <type> RawInfo </type > 
            <context> {127.100.50.1//all , 127.100.50.5//all , 127.100.50.15//all , 

127.100.50.19//all , 127.100.50.36//all} </context>  
            <controlStatus> Enabled </controlStatus>  
        </NEMInfoSpecification>  
        <NEMInfoSpecification>  
            <descriptor> Load of router interface </descriptor>  
            <contentType> Numeric </contentType>  
            <informationUsage> Acquired </informationUsage>  
            <type> RawInfo </type>  
            <context> {127.100.50.1//all , 127.100.50.5//all , 127.100.50.15//all , 

127.100.50.19//all , 127.100.50.36//all} </context>  
            <controlStatus> Enabled </controlStatus>  
        </NEMInfoSpecification>  
        <NEMInfoSpecification>  
            <descriptor> Routing Table </descriptor>  
            <conten tType> List &lt; LSA&gt; </contentType>  
            <informationUsage> Acquired </informationUsage>  



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 29 

            <type> RawInfo </type>  
            <context> {127.100.50.1 , 127.100.50.5 , 127.100.50.15 , 127.100.50.19 , 

127.100.50.36} </context>  
            <control Status> Enabled </controlStatus>  
        </NEMInfoSpecification>  
    </AcquiredInputs>  
    <OptionalExternalInputs>  
        <NEMInfoSpecification>  
            <descriptor> Prediction of router interface load </descriptor>  
            <contentType> Numeric </cont entType>  
            <informationUsage> External Optional </informationUsage>  
            <type> Knowledge </type>  
            <context> {127.100.50.1//all , 127.100.50.5//all , 

127.100.50.15//all} </context>  
            <controlStatus> Resolved -  Enabled <! -- Means KNOWLEDGE found an UMF 

entity to provide this knowledge to this NEM instance -- > 
            </controlStatus>  
        </NEMInfoSpecification>  
        <NEMInfoSpecification>  
            <descriptor> Prediction of router interface load </descriptor>  
            <contentType> Numeric </contentType>  
            <informationUsage> External Optional </informationUsage>  
            <type> Knowledge </type>  
            <context> {127.100.50.19//all , 127.100.50.36//all} </context>  
            <controlStatus> UnResolved <! -- Means KNOWLEDGE did not find an UMF entity 

to provide this knowledge to this NEM instance -- > 
            </controlStatus>  
        </NEMInfoSpecification>  
    </OptionalExternalInputs>  
    <PossibleActions>  
        <NEMActionSpecification>  
            <descri ptor> Switch ON/OFF Ethernet port </descriptor>  
            <contentType> Boolean </contentType>  
            <controlFlexibility> {Enabled, Disabled, 

Intercepted} </controlFlexibility>  
            <controlStatus> Disabled </controlStatus>  
            <target> {127. 100.50.1//all , 127.100.50.5//all , 

127.100.50.15//all} </target>  
        </NEMActionSpecification>  
        <NEMActionSpecification>  
            <descriptor> Switch ON/OFF Ethernet port </descriptor>  
            <contentType> Boolean </contentType>  
            <controlFlexibility> {Enabled, Disabled, 

Intercepted} </controlFlexibility>  
            <controlStatus> Enabled </controlStatus>  
            <target> {127.100.50.19//all , 127.100.50.36//all} </target>  
        </NEMActionSpecification>  
        <NEMActionSpecific ation>  
            <descriptor> Switch ON/OFF IP interface </descriptor>  
            <contentType> Boolean </contentType>  
            <controlFlexibility> {Enabled, Disabled} </controlFlexibility>  
            <controlStatus> Disabled </controlStatus>  
            <target> {127.100.50.1//all , 127.100.50.5//all , 127.100.50.15//all , 

127.100.50.19//all , 127.100.50.36//all} </target>  
        </NEMActionSpecification>  
        <NEMActionSpecification>  
            <descriptor> Change metric of IP interface </descriptor>  
            <contentType> Numeric </contentType>  
            <controlFlexibility> {Enabled, Disabled, 

Constrained} </controlFlexibility>  
            <controlStatus> Disabled </controlStatus>  
            <target> {127.100.50.1//all , 127.100.50.5//all , 127.100.50.15 //all , 

127.100.50.19//all , 127.100.50.36//all} </target>  
        </NEMActionSpecification>  
    </PossibleActions>    
</eu.univerself.nem.InstanceDescription>  
 
 
 
 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 30 

3.1.7 NEM Deletion 

A DELETE INSTANCE message is actually a specific case of a NEM INSTANTIATION/DELETION message that 
follows the format described in Table 2. 

3.1.8 b9aΩǎ wŜƭŀǘƛƻƴǎ ǿƛǘƘ /ƻƻǊŘƛƴŀǘƛƻƴ 

In practice COORD is controlling the NEM to insure orchestration with other NEM instances and avoid conflicts 
with other NEM instances. The following paragraph details some specific aspects and mechanisms relevant to 
the control of NEMs by COORD. 

First COORD is working with the identification of atomic conflicts between NEMs. This is done by looking at 
Instance Descriptions of NEMs. 

Then COORD is picking conflict avoidance strategies for group of atomic conflicts. 

Then COORD is controlling the behaviour of NEMs by enabling and disabling some subsets of the NEMs 

In parallel, COORD is applying orchestration policies that drive the way some NEM instances should be 
triggered after other NEM instances. This will be translated into regime policies (see Figure 6). 

Hereafter is a list of refinements that can be provided to the NEM instance descriptions. This paragraph details 
how some specific sub-classes of either UMFInformationSpec or ActionSpec types can be used to identify 
specific type of inputs or outputs. Coordination is likely to use this in order to perform conflict avoidance, and 
also to determine the proper type of conflict avoidance strategy. 

 Regarding the possible outputs ((UMFInfoSpecification)) of NEMs, they could make use of the 
following specific sub-format derived from the Information Model (see Figure 7): 

o utility of a NEM, 

o analytical fuƴŎǘƛƻƴ ƻŦ ǘƘŜ b9aǎΩ ǳǘƛƭƛǘȅΣ 

o predicted utility, 

o description of an action completed, 

o description of an action to be completed, 

o typical period of the NEM, 

o other (aka generic or undefined) 

 Regarding the possible actions produced by NEMs, they could make use of the following specific sub-
format derived from the Information Model (see Figure 8): 

o Set parameter value: then specify the parameter name, id (equipment/interface targeted), 
range 

o Populating a network DB: then specify the DB name, id, and kind of fields that can be 
populated 

o other (aka generic or undefined) 

 Regarding the possible NEMSpecificPolicySpecifications, they could make use of the following specific 
sub-format derived from the Information Model (see Figure 6): 

o Weighting factor of the utility function, (should provide range or possible values) 

 

To better understand the relation between the NEMs, UMF in general and COORD in particular, it is worth 
depicting the different time scales at which the NEM is behaving (see Figure 9). The smaller time scale is the 
time-scale of a cycle of the MAPE autonomic loop of the NEM. Then a bigger time-scale is the period during 
which COORD is not modifying the control onto the NEM (neither changing the regime nor the action 
constraints). Then even bigger time-scale is the period during which GOV is setting the NEM in the ready state 
(see section 3.1.1 Life-cycle of a NEM instance). While the biggest time-scale is the period during which a NEM 
instance exists. Some of the coordination mechanism will only play with the control of the NEM, while 
mechanisms like joint optimization are interfering with the NEM at each MAPE cycle (e.g. in order to receive 
the predicted utility). 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 31 

 

Figure 9. Different time scales of a NEM 

Table 6 indicates the NEM mechanisms used by the existing coordination strategies (see section 4.3.1 
Optimization and conflict avoidance mechanisms): 

Table 6. NEM mechanisms used by COORD depending on the coordination strategy. 

 
Setting 
runtime 
regime 

NEM 
providing 
knowledge 

Enabling/ 
Disabling 
NEMs 
actions 

Enforcing the 
action to the 
NEM 

NEM 
receiving 
knowledge 

Setting range 
to 
parameters 

Random 
token 

x      

Time 
separation 

x 
Typical 
period 

    

SOUP x 
Predicted 
utility 

x    

Joint 
Optimisation  

x 
Utility,(Utility 
function) 

x x   

Future 
strategies? 

    ? ? 

 

Table 7 provides the main lines of an algorithm to determine which coordination strategy to pick depending on 
the properties of the conflicting NEMs. 

Table 7. Criteria for determining which coordination strategy is applicable to which NEM. 

Strategy Conditions on NEM 

Random token Applicable to any NEM 

Time separation Applicable to any NEM that can share its typical period 

SOUP 

Applicable to NEMs, which are capable of: 

Providing their predicted utility 

Enabling/disabling the enforcing of their action 

Joint Optimisation 

Applicable to NEMs, which are capable of: 

Providing their utility, 

Disabling their work, 

Have a single action, which is of the type set parameter value 

Future strategies Unknown yet 

3.1.9 Description of the operations for state transitions 

The operations that enable a NEM to go from one state to another state of its lifecycle are described 
thereafter. 

 

Operation Name getState 

Growing Time scale

MAPE of

a NEM instance

Control of

a NEM instance

by COORD

Activation of

a NEM instance

by GOOV

Deployment of

a NEM instance



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 32 

Description Retrieves the current state of the NEM.  

Constraints The NEM itself must establish "happens-before" 
relationships between asynchronous operations that 
change and/or retrieve its state. 

List of input data  

List of output data state : NEMState, the current state of the NEM, the 
values can be: READY, OPERATIONNAL, DEPLOYING, 
REGISTERING, UNREGISTERING, UNDEPLOYING, 
UPDATING, VOID INSTANTIATED 

List of non-functional requirements  

 

Operation Name getManifest 

Description Retrieves the manifest of NEM class.  

Constraints  

List of input data  

List of output data manifest : NEMManifest, the NEM's manifest 
(see section 3.1.3) 

List of non-functional requirements  

 

Operation Name enforceMandate 

Description Sets the mandate for the NEM (see Section 3.1.5). 

 

It will validate the addresses of the core blocks 
contained in the mandate as well as the configuration 
options to be set, and will return corresponding 
codes in the case of error. 

In case a mandate has already been set to the NEM, it 
will be updated with the new one while any missing 
fields of the new mandate will be filled-in by the 
corresponding values of the previous mandate. 

This operation will trigger the NEM's deployment and 
registration. 

Constraints Previous mandate has to be already enforced to the 
NEM in case of missing fields. 

The NEM has to check option values that require 
registration change and re-register when necessary. 

The mandate object might or might not be covering 
or releasing additional managed equipment. 

List of input data mandate : NEMMandate, the mandate to enforce 
(see section 3.1.5) 

List of output data result : ActionResult, the result of the operation, 
containing one of the following codes, as well as 
AdditionalInfo whenever applicable: 

ActionResultCode Condition/Descripti
on 

OK Successful 
mandate setting. 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 33 

INVALID_MANDATE_AD
DRESS 

One of the CORE 
addresses specified 
in the mandate is 
unreachable. 
AdditionalInfo in 
this case specifies 
which one it is. 

CFG_OPT_NOT_SUPPOR
TED 

The mandate 
specifies a 
configuration 
option not 
supported by this 
NEM. 
AdditionalInfo in 
this case specifies 
the missing 
option's name. 

VALUE_NOT_ALLOWED The mandate 
specifies a 
configuration 
option value that is 
not allowed. 
AdditionalInfo in 
this case specifies 
the option's name. 

DEPLOYMENT_ERROR An error occurred 
during deployment 
of the NEM. 
AdditionalInfo in 
this case contains 
debug information. 

REGISTRATION_ERROR* An error occurred 
during the 
registration of the 
NEM. 
AdditionalInfo in 
this case contains 
debug information. 

*Note that this  error code might occur during the re-registration 

of the NEM because of a configuration option value change that 
requires re-registration (see 
ConfigOptionDescription.RequiresRegistrationChange field) 

List of non-functional requirements After a call to this method the NEM might need to re-
deploy and re-register. 

 

Operation Name getMandate 

Description Retrieves the mandate that has been set to a NEM 
using enforceMandate or null if no mandate has been 
set. 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 34 

Constraints  The NEM must make sure all the mandate fields 
regarding configuration options and the managed 
equipment are up-to-date. 

List of input data  

List of output data NEMMandate (see section 3.1.5) 

List of non-functional requirements  

 

Operation Name revokeMandate 

Description Revokes any mandate applied to the NEM. 

This operation will cause the NEM to undeploy and 
unregister. All subsequent calls to "getMandate" will 
return null, and the NEM will reach the 
"VOID_INSTANTIATED" state upon completion of the 
operation. 

If the NEM is already in the "VOID_INSTANTIATED" 
state, this operation has no effect. 

Constraints   

List of input data  

List of output data result : ActionResult, the result of the operation, 
containing one of the following codes, as well as an 
"AdditionalInfo" instance  whenever applicable: 

ActionResultCode Condition/Description 

OK Successful mandate 
revocation. 

OK_WITH_WARNINGS Successful mandate 
revocation but one or 
more of the 
interested parties 
could not be notified 
(e.g. COORD or 
KNOW).  

Additional Info in this 
case contains debug 
information. 

 

List of non-functional requirements Note that there is no reason for which a NEM will not 
go to the state "VOID_INSTANTIATED" after this 
operation. Even if, for instance, COORD or KNOW is 
down and cannot be notified of the NEM's stopping. 

 

Operation Name setUp 

Description Activates a NEM to start operating. 

Constraints The NEM must be on the "READY" state during a call 
to setUp.   

If that is not true during a call to setUp, error 
"NEM_NOT_READY" is returned.  

List of input data  

List of output data result : ActionResult, the result of the operation, 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 35 

containing one of the following codes, as well as 
AdditionalInfo whenever applicable: 

ActionResultCode Condition/Description 

OK Successful activation. 

NEM_NOT_READY Returned upon a call to 
activate the NEM while 
it's not in the "READY" 
state. AdditionalInfo 
contains the current 
state of the NEM. 

 

List of non-functional requirements  

 

Operation Name setDown 

Description Deactivates an operating NEM so that it reaches the 
"READY" state. 

Constraints The NEM might be in any state during a call to 
setDown.   

If the NEM is not in the "OPERATIONAL" state during 
a call to setDown, the operation has no effect, and 
the current state is returned along with a warning 
indication in the result. 

List of input data  

List of output data result : ActionResult, the result of the operation, 
containing one of the following codes, as well as 
AdditionalInfo whenever applicable: 

ActionResultCode Condition/Description 

OK Successful 
deactivation.  

OK_WITH_WARNING Returned upon a call 
to deactivate the NEM 
while it's not in the 
"OPERATIONAL" state. 
AdditionalInfo 
contains the current 
state of the NEM. 

 

List of non-functional requirements  

 

Operation Name executeControlPolicy 

Description Commands a NEM to execute the specified control 
policy. 

Constraints The NEM has to be in the "OPERATIONAL" state 
during this invocation, otherwise an error is returned. 

List of input data policy: ControlPolicy, the policy object to be 
executed. 

List of output data result : ActionResult, the result of the execution, 
containing one of the following codes, as well as 
AdditionalInfo whenever applicable: 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 36 

  ActionResultCode Condition/Description 

OK Successful execution.  

ERROR_NOT_OPERA
TIONAL 

Returned whenever 
this operation is 
invoked and the NEM 
is not in the 
"OPERATIONAL" state. 

OTHER_ERRORS.....
OR.....WARNINGS 

??? 

 

List of non-functional requirements  

 

Operation Name delete 

Description Revokes the NEM's mandate and deletes the 
instance, hence it terminates any process it is running 
in, thus, releasing any resources associated with the 
NEM. 

This method has the exact same effect of 
"revokeMandate" plus it causes the NEM to 
terminate after the revocation is completed. 

Constraints  

List of input data  

List of output data (see output of "revokeMandate") 

List of non-functional requirements (see NF requirements of "revokeMandate") 

 

Operation Name addStateTransitionListener 

Description Subscribes a listener to be notified of state change 
events. 

Constraints  

List of input data listener: StateTransitionEventListener, the instance to 
notify of state changes. 

List of output data  

List of non-functional requirements If the listener is already in the list, this operation has 
no effect. 

 

Operation Name removeStateTransitionListener 

Description Unsubscribes a listener of state change events. 

Constraints  

List of input data listener: StateTransitionEventListener, the instance to 
remove from the list of listeners. 

List of output data  

List of non-functional requirements If the listener is not in the list, the operation has no 
effect. 

 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 37 

3.2 Governance block  
Governance is a way to control and manage networks that integrate autonomic capabilities. The aim of 
governance is to allow the human operator to pilot his network through high levels business objectives that is 
without the need of having deep technical knowledge of the network. Governance also offers an autonomic 
oriented network and service view to the operator with a two-fold mission: delivering the status of network 
resources and deployed services, report on the ability of autonomic applications to fulfil the business goals. The 
ǇǊƻǾƛŘŜŘ ƎƻǾŜǊƴŀƴŎŜ ƻǇŜǊŀǘƛƻƴǎ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ŘŜǎƛƎƴ ŀ άƭƻƻƪ ŀƴŘ ŦŜŜƭέ IǳƳŀƴ ǘƻ bŜǘǿƻǊƪ ǘool that will 
enable the operator access in a more intuitive way the network view of its interest. 

Alike any other UMF Core Block, GOV is also implementing at least a KnowledgeExchangeInterface in order to 
receive and provide flows of information under the control of the Information Flow Establishment and 
Optimisation function of KNOW (see section 3.3.4). 

List of Governance block functions:  

 Human to Network Interface  

 Policy Derivation and Management  

 NEM Management  

 Enforcement  

3.2.1 Human to Network Interface 

The Human to Network Interface function provides a friendly way of creating and editing policies using a high 
level business language. It is the main communication channel between UMF and the human operator. 

The main functionality of the H2N interface is to provide a tool for the human operator to insert high-level 
business objectives, which will be later on translated autonomously into technology-specific terms so that the 
human operator does not need to deal with any technical details. High level objectives may be related to the 
introduction of a new application, sets of user classes for the application, sets of Quality of Service (QoS) levels 
for each user class of the application, etc. These high-level objectives/policies need to be further propagated to 
the network going through a set of levels (related to different aspects of the management of a communications 
network) and be transformed into lower level policies so that they reach the element(s) in which to be 
enforced in terms of low level, technology-specific commands. Consequently, the already set business goals are 
forwarded to the Policy Derivation & Management block in order be translated from service requirements into 
network configuration (technology-specific terms) and leave the system to autonomously work out the 
situation and meet the objectives. The H2N interface also allows feedback, e.g. the result of diagnosis or a 
visualization of the monitoring to the system administrator/operator. 

 

[ƛǎǘ ƻŦ άHuman to Network Interfaceέ ƻǇŜǊŀǘƛƻƴǎΥ  

High Level Parameters Definition, Service Definition, Network & Service Supervision 

 

Name High Level Parameters definition 

Description High-level parameters definition block allows the 
composition of high level parameters for a given 
service, network operation, group of services or 
group of network operations. For instance, the 
human operator can define that Gold users using 
streaming service should experience excellent levels 
of availability, reliability, speed and security. 

Constraints  

List of input data Performance parameters 

List of output data Business policies  

List of non-functional requirements  

 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 38 

Name Service definition  

Description Service definition allows the specification of 
ƻǇŜǊŀǘƻǊΩǎ ǇŀǊŀƳŜǘŜǊǎΥΣ ǘȅǇŜ ƻŦ ǎŜǊǾƛŎŜ, network 
technologies, user classes, available levels of 
availability, reliability, speed and security, etc. 

Constraints  

List of input data Service attributes  

List of output data Service  

List of non-functional requirements  

 

Name Network and Service Supervision  

Description Network & Service supervision function allows the 
visualization of the network topology, status and 
ŀƭŜǊǘǎΦ !ǎ ŘŜŘǳŎŜŘ ŦǊƻƳ aƛƭŜǎǘƻƴŜ нрΣ άIǳƳŀƴ 
ŦŀŎǘƻǊǎ ƛƴ ƴŜǘǿƻǊƪ ƳŀƴŀƎŜƳŜƴǘέΣ ƻƴŜ ƻŦ ǘƘŜ 
demands of human operators concerns the 
supervision of the functioning of the autonomic 
network, a factor that is closely related to trust. In 
general, the request was a tool able to provide the 
information required at the first sight, but with the 
possibility of getting more detailed information when 
needed. Tools should also provide trustworthy 
information and of an appropriate amount. They 
should also be usable so that there is not much 
manual work and provide access to all equipment 
that should be supervised. 

Constraints  

List of input data Network monitoring information : 
ServiceStatisticalInfo, ResourceStatisticalInfo, 
Performance, ResourceStateInfo, ServiceStateInfo 

List of output data N/A (visualization of input data) 

List of non-functional requirements  good graphical user interface, which should 
provide the information required at the first 
sight, but there should be a possibility to get 
more detailed information when needed 

 easy to use 

It is worth noting that these operations can be implemented in a dedicated graphical user interface, or 
alternatively can be implemented as interfaces to the existing OSS and BSS systems of the operator. 

3.2.2 Policy Derivation and Management function 

The Policy Derivation and Management (PDM) function is in charge of (i) providing facilities for the policies 
edition and storage (insertion, modification, retrieval and removal of policies) (ii) translating business language 
to more specific policy language statements, (iii) checking whether the different policies have conflict, (iv) in 
case conflicts appear, resolve them according to the well-defined conflict resolution mechanisms, and, finally 
(v) ensuring cohesion between different forms of policies at different levels of abstractions.  

Translation is typically done through a set of levels (related to different aspects of the management of a 
communication network) and produces as its final output a set of lower level policies that can be understood 
and interpreted by NEMs (the so-called NEM policies).  Three translation levels were adopted and defined as 
follow:  

 ά.ǳǎƛƴŜǎǎ ƭŜǾŜƭέ ǿƘƛŎƘ ŎƻǊǊŜǎǇƻƴŘ ǘƻ άaŀǊƪŜǘΣ ǇǊƻŘǳŎǘ ϧ ŎǳǎǘƻƳŜǊέ ƻŦ Ŝ¢ha όǇƻƭƛŎƛŜǎ ǊŜƭŀǘŜŘ ǘƻ 
Strategy, Infrastructure and Product (SIP) and Operations (OPS) processes). 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 39 

 ά{ŜǊǾƛŎŜ ƭŜǾŜƭέ ǿƘƛŎƘ ŎƻǊǊŜǎǇƻƴŘ ǘƻ ά{ŜǊǾƛŎŜέ ƻŦ Ŝ¢ha όǇƻƭƛŎƛŜǎ ǊŜƭŀǘŜŘ ǘƻ {ŜǊǾƛŎe management and 
operations processes of OPS). 

 άb9a ƭŜǾŜƭέ ǿƘƛŎƘ ŎƻǊǊŜǎǇƻƴŘ ǘƻ άwŜǎƻǳǊŎŜέ ƻŦ Ŝ¢ha όǇƻƭƛŎƛŜǎ ǊŜƭŀǘŜŘ ǘƻ wŜǎƻǳǊŎŜ ƳŀƴŀƎŜƳŜƴǘ ŀƴŘ 
operations processes of OPS).  

The levels in parallel with eTOM business process framework levels are represented in Figure 10. 

 

Figure 10. Policy levels of UniverSelf approach in parallel with eTOM business process framework levels. 

As illustrated in Figure 11Σ ǘƘŜ ά.ǳǎƛƴŜǎǎ ƭŜǾŜƭέ ǇƻƭƛŎƛŜs are technological/administration oriented and 
ǘŜŎƘƴƻƭƻƎȅ ƛƴŘŜǇŜƴŘŜƴǘΣ ǘƘŜ ά{ŜǊǾƛŎŜ ƭŜǾŜƭέ ǇƻƭƛŎƛŜǎ ŀǊŜ ǎŜǊǾƛŎŜ ƻǊƛŜƴǘŜŘ ŀƴŘ ǘŜŎƘƴƻƭƻƎȅ ƛƴŘŜǇŜƴŘŜƴǘ ŀƴŘ ǘƘŜ 
άb9aέ ǇƻƭƛŎƛŜǎ that are technology dependent. The NEM policies are then enforced onto the corresponding 
NEMs, which in turn will transform them to device-specific commands (in most cases, vendor specific 
commands) and enforce them into their managed network elements that belong to any of the network 
segments. This latest translation is handled by the vendor specific wrappers developed inside the NEMs.  

The specification of this number of policy levels enables policy continuum and the operations described above 
should be performed in each level of the policy continuum. Hence, we suggest an operational layered 
structure, where each layer corresponds to a level of the Policy Continuum.  

 

Figure 11. Policy content per level. 

Once a policy is created at any of the policy continuum level, it must be analyzed for correctness through a 
dedicated process (syntactic analysis). Then, the newly created policy should also be analyzed for conflicts 
detection. If the policy does not conflict with existing policies at the same level, it is translated into policies of 
the lower level. The outlined process is repeated, until the derivation of NEM policies.  

The policies must be expressed using the SID policy model. SID defines Event-Condition-Action (ECA) policies, 
that is, an Event triggers the invocation of the rule, and if the condition is satisfied, then the action is carried 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 40 

out. Figure 12 and Figure 13 shows the representation of a policy rule and policy structure in UMF. A summary 
of SID Policy Model is provided in Annex B. 

 

Figure 12. Representation of a PolicyRule. 

 

Figure 13. Representation of PolicyStrusture. 

[ƛǎǘ ƻŦ άtƻƭƛŎȅ 5ŜǊƛǾŀǘƛƻƴ ŀƴŘ aŀƴŀƎŜƳŜƴǘέ ƻǇŜǊŀǘƛƻƴǎΥ  

Build Business Policy, Create Policy Entry, Retrieve Policy, Update Policy, Delete Policy, Validate Policy, Detect 
Policies Conflicts, Translate Policy, Check Feasibility & Optimize, Policy Efficiency  

 

Operation 1 Build Business Policy 

 class PolicyRule

Collection

Policy Event Entities::

PolicyEventBase

+ hasEventEvaluated:  int = 0

Policy Condition Entities::

PolicyCondition

Policy Action Entities::

PolicyAction

PolicySet

Policy Framework::PolicyRuleBase

+ hasSubRules:  boolean = FALSE

+ isCNF:  boolean = TRUE

PolicySetSpec

Policy Framework Spec Entities::

PolicyRuleSpec

+ executionStrategy:  int = 2

+ policyActionSelectCriteria:  string

+ policyConditionSelectCriteria:  string

+ policyEventSelectCriteria:  string

+ sequencedActions:  int = 1

POL Entities::

PolicyRule

RootEntity

Policy Framework::Policy

+ keywords:  int

+ policyName:  string

çUMFè

CoordinationPolicy

çUMFè

ReportingPolicy

NEM::

NEMPolicySpecification

PolicySet

Policy Framework::

PolicyGroup 1..1

{bag}

SpecifiesPolicyRule

0..*

{bag}

+_policyRuleBase

0..*

{bag}

PolicyActionRuleDetails

+_policyAction

1..*

{bag}
+_policyAction1 0..1

{bag}

ContainedPolicyActionDetails

+_policyAction 0..*

{bag}

+_policyRuleBase

0..*

{bag}

PolicyConditionRuleDetails

+_policyCondition

1..*

{bag}

ContainedPolicyConditionDetails

+_policyEventBase1 0..1

{bag}

ContainsEventSets

+_policyEventBase 0..*

{bag}

0..*

{bag}

EventTriggerDetails

+_policyEventBase
1..*

{bag}

0..1

{bag}

PolicyGroupExecutionDetails

+_policyGroup
0..*

{bag}

 class PolicyStructure

Policy Condition Entities::

PolicyConditionComposite

+ conditionIsCNF:  boolean = TRUE

Policy Condition Entities::PolicyConditionAtomic

+ conditionSequenceNumber:  int

+ hasEvaluated:  int = 0

+ hasSubConditions:  boolean = FALSE

Policy

Policy Statement Entities::

PolicyStatement

Policy

Policy Condition Entities::

PolicyCondition

Specification

Policy Framework Spec Entities::

PolicyConditionSpec

ContainedPolicyConditionDetails

1..1

{bag}

SpecifiesPolicyCondition

+_policyCondition

0..1

{bag}

+_policyStatement



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 41 

Description Build Business Policy from High Level Objectives 
(HLO) or High Level Parameter (HLP) 

Constraints HLP/HLO are provided by BSS operator via a 
specialised human to network GUI. 

List of input data Performance parameters  

List of output data Business Policy 

List of non-functional requirements N/A 

Note: This operation could be realized at the BSS level  

 

Operation 2 Create policy entry 

Description Create policy in the policy repository 

Constraints Precondition: policy repository address available. 

List of input data Policy description 

List of output data Notification (Ok/nOK) 

List of non-functional requirements  

 

Operation 3 Update policy 

Description Update the policy content 

Constraints Precondition: policy exists in the repository 

List of input data Policy description/format 

List of output data Notification (Ok/nOK) 

List of non-functional data  

  

Operation 4 Delete policy 

Description Delete a policy from the policy repository 

Constraints Precondition: policy exists in the repository. 

List of input data NEM  ID, Policy ID/policy criteria 

NOTE: NEM ID is used to delete all its policies 

Policy criteria: corresponds to research criteria. 

List of output data Notification (Ok/nOK) 

List of non-functional requirements  

 

Operation 5 Retrieve policy 

Description Retrieve policy from repository 

Constraints Precondition: policy exists in the repository. 

List of input data NEM ID/Policy ID/Policy criteria 

NOTE: NEM ID is used to retrieve all its policies  

Policy criteria: corresponds to search criteria. 

List of output data Policy List that matches the criteria.  

Empty list if no policy matches the criteria. 

List of non-functional requirements  

 

Operation 6 Validate policy 

Description Validate the correctness (in terms of syntax and 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 42 

values) of a policy 

Constraints  

List of input data Policy 

List of output data Boolean indicating whether the Policy is syntactically 
valid or not.  

List of non-functional requirements  

 

Operation 7 Detect policy conflicts 

Description Detect conflicts between policies applicable to a NEM 

Constraints Preconditions: more than one policy exists in the 
Policy repository.  

List of input data Policy list or NEM ID 

List of output data Boolean, Conflicted Policy list  

List of non-functional requirements  

 

Operation 8 Resolve policy conflicts 

Description Resolve policy conflicts using the appropriate 
resolution mechanisms. 

Constraints Precondition: Policy conflicts detection returns a 
positive value(Boolean=true) 

List of input data Conflicted Policy list 

List of output data Conflict-free Policy list 

List of non-functional requirements  

 

Operation 9 Translate policy 

Description Translate business policies to service policies to NEM 
policies.  

Constraints Precondition: Must be called on a list of conflict-free 
policies. 

List of input data conflict-free (business or service) Policy list 

List of output data Service policy list or NEM  Policy list 

List of non-functional requirements  

 

Operation 10 Check Feasibility & Optimize 

Description For each generated policy (business level or service 
level), it analyses the current status of the network 
and the available resources, diagnoses potential 
problems and decides if some kind of optimization 
should be done for the network to accommodate the 
requests defined by the policy.  For instance, in case 
the human operator wants to deploy a new service, 
the Assess Policy Feasibility & Optimize operation is 
asked to accommodate the request onto the 
network.  

Constraints  

List of input data List of conflict-free Policies (business level or service 
level)  



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 43 

List of output data List of Policies and feasibility report 

List of non-functional requirements  

  

Name Policy Efficiency 

Description Assess the successful translation of high level to low 
level policies, that is, if the derived policies 
accomplish the goals described by the operator in the 
high level policies. A successful policy will lead to well 
controlled and efficient network operations, while an 
unsuccessful policy may lead to misconfigurations, 
QoS / QoE degradation and network instabilities. 
Thus, a mechanism able to evaluate the policy 
translation process and measure the gains from the 
policy application is necessary. The success of a policy 
in accomplishing the goals described by the operator 
is in strong relation with the trustworthiness of this 
specific policy. Trust of policy can be defined as a 
comparison between the reference behaviour (the 
behaviour implied in high level policies) and the 
actual behaviour (based on measurements) of the 
network after the implementation of the policy.  

List of input data Network monitoring information : 
ServiceStatisticalInfo, ResourceStatisticalInfo, 
Performance, ResourceStateInfo, ServiceStateInfo  

List of output data Policy trustworthiness estimation: List of {Policy, 
Trust index of the policy}   

List of non-functional requirements  

Following the previously mentioned layered structure, the Create policy, Validate policy, Detect policy conflicts, 
Resolve policy conflicts, Translate policy, Check feasibility & Optimize and Policy Efficiency must take place at 
each of the levels of the policy continuum. 

 

3.2.3 NEM Management 

¢ƘŜ άb9a aŀƴŀƎŜƳŜƴǘ ŦǳƴŎǘƛƻƴέ ŎƻƭƭŜŎǘǎ ŀƴŘ ǎǘƻǊŜǎ ƛƴ ǘƘŜ b9a ǊŜƎƛǎǘǊȅ ŀƭƭ ǘƘŜ ƳŀƴŀƎŜƳŜƴǘ ƛƴŦƻǊƳŀǘƛƻƴ ƻŦ 
the deployed NEMs. It also manages the state transition (including the activation and deactivation of the 
autonomic control loops) of the NEMs and defines the reporting strategy that meet the operator needs. The 
reported information is also forwarded to the Policy Derivation and Management function and can therefore 
be used to trigger more relevant policies given the network on-going situation. 

Lƛǎǘ ƻŦ άb9a aŀƴŀƎŜƳŜƴǘέ ƻǇŜǊŀǘƛƻƴǎΥ  

Create NEM entry, Delete NEM entry, Retrieve NEM information, Update NEM information, Build reporting 
strategy, Send Reporting strategy, Evaluate Deployed Policies, Create NEM Instance  

Operation 11 Create NEM entry 

Description Insert INSTANCE ID into the NEM registry 

Constraints Pre-condition: NEM registry address available 

Post-condition: updated NEM registry 

Create, Retrieve, Update, Delete (CRUD) operations 
must be provided by data storage system 

List of input data INSTANCE ID  or List of INSTANCE IDs 

List of output data Notification(Ok/nOK) 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 44 

List of non-functional requirements  

 

Operation 12 Delete NEM entry 

Description Delete NEM entry from the NEM registry and the 
corresponding NEM information (mandate, instance 
description) 

Constraints Pre-condition: The NEM to be removed must have 
been previously stored in the registry 

CRUD operations must be provided by data storage 
system 

List of input data INSTANCE ID or List of INSTANCE IDs 

List of output data Notification(ok, Error if NEM not in registry) 

List of non-functional requirements Impact versus dependant NEMs 

 

Operation 13 Retrieve  NEM information  

Description Get NEM information (report/log) according to 
reporting strategy. 

Constraints Pre-condition: INSTANCE ID and information 
previously stored in the registry/database 

Warning: request size or returned information 
volume  

List of input data reportingPolicySet or reportingPolicy, INSTANCE ID or 
List of INSTANCE IDs  

List of output data Content of the reporting strategy according to 
reportingPolicySet(see Figure 6 page 20) 

List of non-functional requirements Performance aspects wrt to request and returned 
information size 

 

Operation 14 Update NEM information (status, mandate) 

Description Updates the status of a NEM in the NEM registry 

Constraints Pre-condition: The NEM to be updated must have 
been previously stored in the registry  

Post condition: updated NEM information(new status 
or new  mandate enforced) 

Create, Retrieve, Update, Delete operations must be 
provided by data storage system 

List of input data INSTANCE ID or list of INSTANCE ID 

List of output data  Notification(ok, Error if NEM not in registry) 

List of non-functional requirements Impact versus dependant NEMs, 

Stability issues 

 

Operation 15 Build reporting strategy(=PolicySet) 

Description Build/create reporting strategy composed by several 
reporting policies 

Constraints Policy edition operation must be provided by the 
PBM system. 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 45 

List of input data   Reporting policies 

List of output data  Reporting strategy Set<ReportingPolicy> 

List of non-functional requirements  

 

Operation 16 Send Reporting Strategy 

Description Send reporting strategy to the NEM 

Constraints List of reporting strategies contains ALL reporting 
strategies that the NEM must apply. 

List of reporting strategies replaces the previous 
reporting strategies.  

List of input data  List of PolicySet, ID or list of INSTANCE IDs 

List of output data  Notification (ok, ƴƻƪΣ Χύ 

List of non-functional requirements  

 

Operation 17 Create NEM Instance  

Description Create a NEM instance in the network elements in 
which the NEM software is stored 

Constraints The NEM software is stored in the network element 
or a proxy  

List of input data NEMspecID (see 3.1.4)   

List of output data Notification( OK/NOK) 

 

Operation 17 Set Up a  NEM  

Description Activates a NEM to start operating (see Section 3.1.9) 

Constraints The NEM must be on the "READY" state during a call 
to setUp.   

If that is not true during a call to setUp, error 
"NEM_NOT_READY" is returned. 

List of input data  

List of output data the result of the operation (OK/NEM_NOT_READY) 

 

Operation 17 Set Down a  NEM  

Description Deactivates an operating NEM so that it reaches the 
"READY" state (see Section 3.1.9) 

Constraints The NEM might be in any state during a call to 
setDown.   

If the NEM is not in the "OPERATIONAL" state during 
a call to setDown, the operation has no effect, and 
the current state is returned along with a warning 
indication in the result 

List of input data  

List of output data the result of the operation (OK/OK_WITH_WARNING) 

 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 46 

3.2.4 Enforcement function 

Enforcement encapsulates the communication mechanism between Governance and NEMs. It allows the other 
functions of the Governance block to be independent of the communication aspects for the interconnection 
with NEMs. The communication between the GOV functions and NEMs is mainly achieved through the 
MANDATE object.  

List of operations: Generate NEM Mandate, Send NEM Mandate 

Operation 18 Send NEM Mandate 

Description Sends a new Mandate to a given NEM. This operation 
is used for instance to change the activity phase of a 
given NEM. 

Constraints  

List of input data Mandate (see 3.1.5 

List of output data Notification (OK/NOK) 

List of non-functional requirements  

 

 

Operation 19 Generate NEM Mandate 

Description Generates a new Mandate to a given NEM.  Receives 
a list of policies to be enforced to a NEM, retrieves 
the mandate from the NEM registry, embeds into it 
the new policies and enforces it into the 
corresponding NEM. 

Constraints  

List of input data Policies, NEM ID 

List of output data Mandate (see 3.1.5) 

List of non-functional requirements  

 

The sequent activity diagrams (Figure 14 -16) illustrate GOV operation and interaction  with the other UMF 
core blocks.  



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 47 

 

Figure 14. NEM policy definition activity diagram. 

In the NEM policy definition activity diagram, the Business Operator sets his high level parameters representing 
a set of objectives that the network should meet (operation: High Level Parameters definition). These high 
level parameters are transformed into Business Policies (operation: Build Business Policy). GOV checks the 
correctness of the policy (operation: Validate policy) and transform the Business policy into Service policy 
(operation: Translate policy).  GOV then controls the correctness of the Service policy (operation: Validate 
policy), and assesses the feasibility of the new Service policy (operation: Check Feasibility & Optimize). This 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 48 

assessment operation triggers the KNOW block to ask for information about the current status of the network 
and the available resources (GOV-KNOW interface). When it gets the related information/knowledge, it then 
analyses the ability of the network to handle the requirements defined in the Service policy. If the control 
process diagnoses that the service policy cannot be performed, then the GOV sends the appropriate 
notification to Business Operator with the result of the analysis, the feasibility report. If the control concludes 
that the Service policy is feasible (probably after the completion of relevant optimization actions from involved 
entities), then the service policy is translated to NEM policy (operation: Translate policy). After the control of 
NEM policy correctness (operation: Validate policy), GOV checks again its feasibility (operation: Check 
Feasibility & Optimize) and request again from KNOW, information about the status of the network and the 
available resources. In case any of the operations fails, a notification is sent to the human operator. The final 
outcome of the policy derivation activity is a list of NEM policies.   

Figure 15 presents the activity diagram corresponding to the NEM instantiation activity: 

 

Figure 15. NEM instantiation activity diagram. 

For a NEM policy to be deployed and enforced, the corresponding NEMs must have been already instantiated 
in the network., Figure 15 illustrates the workflow of a NEM instantiation triggered by the action of enforcing a 
NEM policy. Once a new NEM policy has been defined, it goes into the process of enforcement. Prior to this, 
the NEM registries are updated with the new information. Then, GOV sends to the corresponding NEM loader 
the instruction to create an instance (GOV-NEM interface, operation: Create NEM Instance). A notification is 
sent back to the GOV block to report on the action.  (GOV, interface: Send Notification) (NEM deployment 
activity diagram) The instantiated NEM is therefore ready to receive and interpret its policies. These policies 
ŀǊŜ ǳǎŜŘ ǘƻ ƛǎǎǳŜ ŀ a!b5!¢9 ōȅ ǘƘŜ άDŜƴŜǊŀǘŜ aŀƴŘŀǘŜέ ŀƴŘ ά{ŜƴŘ aŀƴŘŀǘŜέ operations of the 
ά9ƴŦƻǊŎŜƳŜƴǘέ ŦǳƴŎǘƛƻƴ ŀƴŘ ǎŜƴǘ ǘƻ ǘƘŜ corresponding NEM.  

Figure 16 illustrates the activity diagram of the NEM configuration that can be achieved only through the 
MANDATE. 

 

 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 49 

 

 

Figure 16. Update Mandate activity diagram. 

Once  GOV defines/derives a conflict-free NEM policy, it examines if the corresponding NEM is in a ready mode. 
If it is not, GOV sets down the NEM (interface GOV-NEM: Set NEM Status) ǘƻ ōǊƛƴƎ ƛǘ ƛƴ ŀ άw9!5¸έ ƳƻŘŜ. When 
GOV accomplishes this procedure or if the NEM is in ready, then GOV creates new NEM mandate message 
(operation: GenerateNEM mandate) and sends it to NEM (interface GOV-NEM: Send NEM mandate). In case 
some problem prevents the NEM to self-configure itself according to the mandate, the NEM status in NEM 
registry is updated (operation: Update NEM information) and a notification is sent to GOV block.  If the NEM 
deployed the new demanded status, then GOV starts up the NEM ((interface GOV-NEM: Set NEM Status).  



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 50 

 

Figure 17. Change NEM operational state diagram. 

When Human Operator decides that he wants to change the operational state of a NEM (activate/deactivate), 
he sends the respective command to GOV (Human operator ςGOV interface, operation: Change NEM status). 
When GOV receives the command, send to the NEM the respective message, to set its operational state to 
up/down (GOV-NEM interface, operation: Set NEM state).. When the change of the operational state is 
accomplished, GOV sends the respective notification to human operator. 

The following figure depicts the registration phase of a NEM, which just deployed after receiving a Mandate. 
The NEM is sending its instance descriptions to the interfaces of KNOW, COORD and GOV specified in the 
Mandate it had received. These UMF core blocks are checking that GOV pre-registered this NEM (to avoid 
savage NEM deployments). These UMF core blocks are then storing the instance descriptions or at least the 
information relevant for them, before acknowledging the instance description (see sections  3.1.5 and 3.1.6 for 
the mandate and instance description formats). 

 



D2.2 ς UMF specifications: Release 2 

FP7-UniverSelf / Grant no. 257513 51 

 

Figure 18. Register NEM activity  diagram. 

 

 


















































































































































