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Abstract 

Today networks are becoming more and more ubiquitous and dynamic. In the near future they will be able to 
hook together a sheer number of heterogeneous (processing, communication and storage) real/virtual 
resources. One of the major challenges of will be managing such large amount of resources in a cost effective 
and timely way in order to meet technical and business requirements, which, in turn, may change dynamically. 
Introducing self-organization capabilities in network control and management is seen as a potential answer to 
face these challenges whilst ensuring network adaptability to changing conditions. In essence, these self-
organisation capabilities can be practically achieved through the exploitations of “constrained optimizations” 
(CO) solvers (i.e. through protocols, control loops, algorithms…spread across network layers). These solvers 
have to be properly orchestrated to avoid instabilities due to unwanted couplings or interactions. Actually, it 
should be noted that the potential occurrence of network instability might have primary effects, such as 
jeopardizing dramatically the performance and compromising an optimized use of resources. Ensuring stability 
of a strategic asset like a network of ICT resources is of paramount importance for the information society. The 
main goals of the case study on Networks Stability and Performance are to report on the development and 
demonstration of methodologies and practical approaches to detect and control the potential occurrence of 
instabilities in diverse network contexts. This document presents a brief description of the use case, its 
methods, concepts and expected innovation. The specific functional, non-functional requirements and the 
associated problems were presented in the deliverable D4.1 [20]. The prioritization of the problems and 
functional requirements were presented in deliverable D4.2 [21].  
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STORY LINE 
The risks of instabilities are already experiences in today’s networks (and also cloud computing infrastructures). 

Ensuring stability of a strategic asset like a network of ICT resources is of paramount importance for society. In 
fact, occurrence of instability in a network may have primary effects both jeopardizing dramatically the 
performance and compromising an optimized use of resources.  

The potential instability of an end-to-end path is a cross-layer issue: in fact, it might depend on the unwanted 
combination of diverse control and optimization mechanisms acting on either the underlying transport network 
or on the higher layers’ components (e.g. flow admission control, TCP congestion control and dynamic routing). 

As an example, it has been widely demonstrated that even with resource over-provisioning; a network without 
an efficient flow admission control has instability regions that can even lead to congestion collapse in certain 
configurations. Congestion control mechanisms represent another example. Currently available mechanisms 
(e.g. TCP Reno and Vegas) are examples of large distributed control loops designed to ensure stable congestion 
control of resources. On the other hand, these mechanisms are expected to be ill suited, from a stability 
viewpoint, for future dynamic networks where transients and capacity will potentially be much larger. A further 
example is the instability risk typical of any dynamically adaptive routing system: this can be (informally) 
defined as the quick change of network reachability and topology information, has a number of possible 
origins, including problems with connections, router failures, high levels of congestion, software configuration 
errors, transient physical and data link problems, and software bugs. 

Prior art analysis about network stability issues offers other interesting examples. In [1], for example, starting 
from a simple model of a traditional network traffic dynamics, it is shown that a phase transition point appears, 
separating the low-traffic phase (with no congestion) from the congestion phase as the packet creation rate 
increases. In [2], an enhanced model has exhibited nontrivial scaling properties close to the critical stability 
point, which reproduce some of the observed real Internet features. In [3] they discuss the possibility of phase 
transitions and meta-stability in various types of complex communication networks as well as the implication of 
these phenomena for network performance evaluation and control. Specific cases include connection-oriented 
networks with dynamic routing, TCP/IP networks under random flow arrivals/departures, and multiservice 
wireless cellular networks. Wang et al. [4] presents an investigation of the dynamics of traffic over scale-free 
networks: results have indicated the existence of the bi-stable state in traffic dynamics; specifically, the 
capacity of the network has been quantified by the phase transition from a free flow state to a congestion 
state. Interestingly [5] addresses the risk of instabilities in Cloud Computing infrastructures. That study points 
out some analogies of Cloud Computing infrastructures and complex systems and elaborates on the emergence 
of instabilities due to the unwanted coupling of several reactive mechanisms.  

Considering the evolution of ICT networks, it is widely recognized that they will become more and more 
ubiquitous and dynamic, hooking together a sheer number of heterogeneous real/virtual resources. So, one of 
the major challenges will be managing said resources in a cost effective way in order to meet technical and 
business requirements whilst ensuring stability and performance. Development and exploitation of self-
organization capabilities in network management (and even into nodes) appears to be an answer to face such 
challenges in spite of the ever growing complexity of networks.  

Practically, network self-organising capabilities can be achieved through the exploitations of “constrained 
optimizations” (CO) solvers (i.e. through protocols, control loops, methods

1
, algorithms…) spread across 

network layers. This is true also for today Internet. On the other hand these CO solvers have to be properly 
orchestrated to avoid unwanted couplings or interactions, potentially bringing to non-linearity in the network 
behaviour.  

 

Fig. 1. Unintended coupling or interactions of multiple methods may create instabilities.  

                                                                 
1
 Method is a general procedure for solving a network problem. 
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Context 1: Stability issues for Congestion Control  
In this section three contexts that have been elaborated as reference examples from which are starting UC2 
investigations about stability.  

Overall a network can be modelled as the interconnection of resources/links carrying the data generated by 
users/sources. Associated with each source is a route, which is the collection of links through which 
information from that source is flowing. In tradition congestion control, each link sets a price per unit of flow, 
based on the aggregate flow crossing that link, and the sources set their transmission rates based on the 
aggregate price they detect. In the absence of delays, this scheme is globally stable. In the presence of delays 
(or large bandwidth) the scheme can become unstable. Sources try maximizing individual profit based on their 
own utility function, on the other hand, links uses prices to align, exactly or approximately, sources “selfish” 
behaviour. As such, congestion control mechanisms exploited in Internet represent one of the largest deployed 
control feedback system, or CO solvers.  

On the other hand, currently available controllers for resource allocation (e.g. congestion control mechanisms 
like TCP are example of large distributed control loops) are deriving the state for a desired equilibrium point 
and they don’t take account of transient behaviours typical of closed-loop system. TCP implicitly maximizes a 
sum of utilities over all the connections present in a network: this function shows the shape of the utility 
function for a single. But transient behaviours are not taken into account, so even if we have a globally 
asymptotically stable equilibrium points (corresponding to the maximization of the utility function), it is not 
clear how the network operates during the transients. 

It’s also interesting noting the instabilities that may occur when trying to use the proactive congestion control 
mechanism of TCP Vegas in a dynamic, in terms of routing, network. In such a case, TCP Vegas is misled by the 
changing Round-Trip Time (RTT) during a reroute, the increase of which designate congestion for TCP Vegas 
and thus decreases the congestion window and the utilization of the link. In other words, these 
misinterpretations lead to instability of the utilization of some links. In order to enhance TCP Vegas 
functionality and make it more stable, a Network Empowerment Mechanism (NEM

2
) (under development) can 

offer to TCP Vegas the knowledge if this RTT change was related to congestion or to another reason (e.g. 
reroute due to a fallen link).  

Context 2: Stability issues for a dynamic virtual network 
Let’s consider an infrastructure encompassing IT resources (e.g. physical servers) and network resources 
(physical routers). Let’s assume that Virtual Machine (VM) and Virtual Router (VR) can be moved from one 
physical node to another (the physical node merely serves as the carrier substrate on which the actual virtual 
node operates). Actually VR is a logical router that separates its functionality from the physical platform that 
hosts the entity, including mechanisms for management, configuration, monitoring and maintenance. 

In principle, a dynamic provisioning of virtual resources (VMs and VRs) [17] could allow load and traffic 
engineering in order to improve performance (e.g. limiting hotspots in the IT resources) and to reduce power 
consumption in the routers network.  

In particular, in case of hotspots in the IT resources, operators can change the allocation or migrate VMs to 
improve performance (e.g. response time). At the same time, as the network traffic volume decreases, 
operators can migrate VR to a smaller set of physical routers and shutdown or hibernate unneeded physical 
routers to save power. When the traffic starts to increase, physical routers can be brought up again and virtual 
routers can be migrated back accordingly). 

In summary, in this example we can see the interactions of two main methods, that have to be coordinated to 
ensure stability and proper levels of performance: the former is in charge of allocating VM across multiple 
networks for performance optimization; the latter is in charge of migrating VR a smaller set of physical routers 
for saving power (by shutting down or hibernating unneeded physical routers). It should be noted that 
although both methods would be stable if operating alone, without a proper coordination, the combination of 
the two methods might risk a positive feedback loop.  

                                                                 
2
 NEM = a functional grouping of objective(s), context and method(s) where “method” is a general procedure for solving a 

problem. A NEM is (a priori) implemented as a piece of software that can be deployed in a network to enhance or simplify its 
control and management (e.g. take over some operations). An intrinsic capability of a NEM is to be deployable and 
interoperable in a UMF context (in a UMF-compliant network). 
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Context 3: Vulnerability Management 
From a security perspective, the stability of a network also depends on its capability to prevent vulnerable 
configurations. In autonomic environments, administrators provide high-level objectives while management 
operations are delegated to the networks themselves. Along with administration tasks done by humans, 
changes performed by autonomic entities may generate vulnerable states when following high-level objectives. 
Even though these changes can operationally improve the environment, vulnerable configurations may be 
produced increasing the exposure to security threats. 
 
Accordingly, vulnerability management plays a crucial role for maintaining safe configurations on devices in 
these environments. The assessment of local vulnerabilities on a device requires the investigation of specific 
states and conditions that may allow an attacker to compromise the system. While black-box techniques, such 
as network scanning can provide useful security information without requiring specific tools in the device 
under analysis, grey-box techniques can highly enhance the obtained information by accessing the device itself 
and inspecting its internal state and particular configurations. For instance, the OVAL language provides a 
support for describing more than 13000 configuration vulnerabilities (official repository). In that context, a 
NEM on Vulnerability Management related to this topic is under development in autonomic environments. 
 
In addition to local vulnerabilities, distributed vulnerabilities have also to be assessed over a consolidated view 
of the network in order to detect vulnerable states that may simultaneously involve two or more devices. 
Traditional mechanisms perform a global analysis by investigating each network element individually. Even 
though such approaches can detect sets of vulnerabilities that may allow an attacker to perform a multi-step 
attack, they do not provide the capability of detecting vulnerabilities that simultaneously involve two or more 
devices under specific conditions. The underlying problem relies in that each network device can individually 
present a secure state, but when combined across the network, a global vulnerable state may be produced.  
 
Another example is related to the considerable efforts (as shown by the in the prior art) in developing systems 
and methods for detecting potential attacks (e.g. based on OSPF vulnerabilities in equipment’s OS) before they 
can affect seriously network stability (e.g. routing stability). 

 



Case Study on Networks Stability and Performance | UniverSelf White Paper Series 6 

PROBLEM STATEMENT 
If future network management will evolve towards a framework (or ecosystem) of pieces of software 
(implementing methods) interacting each other, then there will be concrete risks of systemic instabilities.  

Taking the metaphor of ecosystem as assembly of species, each of these may have feedback mechanisms that 
could ensure stability if acting alone. However, the overall assembly behaviours may show sharps transitions 
(due to unintended interactions causing non-linearity) from stability to instability: this risk is more and more 
probable as the number and strength of interactions among species increase. 

Already in today networks there are some potential risks of instabilities, but these risks are still limited and 
rather well controlled: actually Internet can be viewed as a self-organizing ecosystem (achieved through 
constrained optimizations actuated through protocols and algorithms), whose level of complexity if still low. 

However, as the number of methods being introduced (for easing network management) will increase, also 
these risks of instabilities will dramatically increase, creating real threats for networks (which will become very 
complex and dynamic, similar to natural ecosystems). Complexity is an attribute of every system or network 
which is composed of a sufficient great number of interacting elements: close to certain levels of complexity 
the system or network becomes brittle and vulnerable and it can switch from one mode to another suddenly, 
spontaneously (e.g. a phase transition occurs which is detected by an abrupt change of an order parameter 
when a control parameter is varied across the critical point).  

It is well known that self-organization implies potential instabilities: stable configurations can be seen as 
indicating the presence of sort of attractors. An attractor, in this context, means one of the states of the 
network where the network settles after starting from a given initial condition. Self-organization needs these 
attractors to have a sufficient instability to be able to alter in order to adapt to the environment. These 
potential instabilities (and the state transitions) should be kept under control and directed (to avoid network 
performance degradations or even worst networks breakdowns). 

In summary, there is the need of designing and developing a methodology and practical approach for setting-
up, configuring and tearing down sets these multiple methods… etc. in order to achieve network optimization 
and stability at the same time. 
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The overall problem of ensuring network stability can be decomposed in a set of sub-problems (this 
decomposition has also be adopted in the QFD analysis of the use case requirements [20], [21]): 

 

PROBLEMS/NEEDS PROBLEMS/NEEDS (lower level of details) 

P1 -To have a run time environment for 

off-line validation and on-line control of 

self-* features. 

To define and collect a set of models, tools for off-line simulations - emulations and in 

line control of networks stability and performance 

Also models of embedded self-* mechanisms that can be used in the UMF for tracing 

the stability of adaptations of those mechanisms 

P2 - To validate self-* features off-line 

(according to predefined criteria) before 

network deployment.  

To make off-line validations based on simulations - emulations of network stability 

and performance  

P3 - To monitor on-line parameters to 

assess and predict network stability 

during network operations.  

To collect on-line data, events. Also to have traces (patterns) of safe and stable 

adaptations, be able to aggregate those traces and be able to use them in network 

forensics  

P4- To analyse-elaborate data about 

network stability during network 

operations.  

To filter and analyse data to assess and predict behaviour of network in terms of 

stability and performance. Be able to expand the aggregated history traces 

P5 - To decide and actuate network self-

stabilization in case of emerging 

instabilities  

To decide the self-stabilization actions for maintaining stability and performance 

(according to SLA). Support the emergence of collaboration patterns (e.g. by means 

of triggering collaboration policies (predicates)  

To actuate network self-stabilization decision actions for maintaining stability and 

performance (according to SLA).  

P6 -To decide and de-activate manually 

self-* features in case of persistent 

instabilities  

To decide conditions for de-activating manually self-* features (e.g. persistent 

instabilities, network cannot self-stabilized). To define conditions per mechanism 

(group of mechanisms), in which a Call for Governance must be issued 

P2.6.2 - To predispose for the manual de-activation of self-* features 

Table 1. Problem decomposition 

Requirements coming out from the problem statement have been regrouped in Deliverables D41 and D42 
(common to all project case studies). Deliverables D41 and D42 are public reports available on the project web 
site: http://www.univerself-project.eu/technical-reports or on request (see Contact section at the end of this 
document). 

 

http://www.univerself-project.eu/technical-reports
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MODELLING  
This section briefly describes the modelling approach adopted by the case study.  

Actor(s) 
The actor is the Network Operator. Network Operator should have the possibility to monitor and control 
network stability. This implies the possibility of enforcing high level policies for self-stabilization or even the 
possibility of de-activating autonomic methods or control-loops (whose unwanted coupling may have caused 
instability).  

The case study on Networks Stability and Performance mainly concerns Service and Resource Management and 
Operations. 

 

 

 

Fig. 2. - eTOM Operations Processes 

(picture credits: http://www.tmforum.org/BestPracticesStandards/BusinessProcessFramework/1647/Home.html) 

Trigger(s) 
The Network Operator should be able to state technical and business goals (e.g. using a human to network 
interface). Main triggers are: 

 Updates of technical and business goals (new deployments of resources or services); 

 Critical situations (e.g. hot spots, traffic congestions, performance degradations, etc.); 

Phases 
Two main phases have been identified: 

 Phase A – before network and service deployment 

 Off-line validation  

 Phase B – during network operations 

 In-line monitoring and detection of emergence network instabilities 

 Proactive and reactive actions to mitigate emergence network instabilities 
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INNOVATION 
Enabling concepts and mechanisms 
The enabling concepts for addressing network stability control concern the mechanisms behind the three 
complementary approaches currently explored in this use case, which are: 

• Preventing vulnerable configurations; 
• Design time verifications;  
• Network utility functions. 

Detection of Vulnerable Configurations 
Autonomic networks have to adapt their configurations with respect to their environment, to protect 
themselves against security attacks, to repair their own failures, and to optimize their various parameters. In 
order to achieve these objectives, autonomic related operations are performed modifying the environment. 
Such operations may lead to potential vulnerable states. Preventing vulnerable configurations contribute to the 
stability of autonomic networks and services. The main activities performed during the lifecycle of the 
vulnerability management process can be mapped to the same activity line present in autonomic components. 
First, vulnerability assessment activities take place in the monitoring phase where tasks for analysing and 
detecting vulnerable states are performed taking advantage of the available security knowledge. When a 
security problem is found, it is then classified and changes for correcting the situation must be performed. 
Vulnerability countermeasures may be planned and executed based on several factors such as importance, 
risks and impact, during the remediation phase.  
In that context, we are working on the integration of security knowledge (vulnerability descriptions) into the 
autonomic management plane. More precisely, our modelling is focused on OVAL vulnerability descriptions 
using first order logic, and permits the translation of these descriptions into policy rules interpretable by the 
Cfengine configuration system [7]. The Open Vulnerability and Assessment Language (OVAL) define a 
specification for vulnerability descriptions and the associated tests [8]. An OVAL description (or OVAL 
definition) specifies a criterion that logically combines a set of OVAL tests. Each OVAL test in turn defines the 
process by which a specific configuration condition or property is assessed on the target device. A typical 
instance of an OVAL test is the checking of the version number of a given library. The overall result for the 
criterion specified in the OVAL definition is built using the results of each referenced OVAL test. First order logic 
has been used as an intermediate language to support the mapping of OVAL descriptions into Cfengine policies 
and to infer a translation algorithm. This work corresponds to the NEM related to vulnerability management. It 
enables the Cfengine autonomic configuration system to dynamically detect vulnerable configurations when 
other management operations are executed.  
From a more distributed perspective, vulnerability management mechanisms usually perform a global analysis 
by investigating each network element individually and do not provide the capability of detecting 
vulnerabilities that simultaneously involve two or more devices under specific conditions. In particular, each 
network device can individually present a secure state, but when combined across the network, a global 
vulnerable state may be generated. We are working on an extension of the OVAL language, called DOVAL 
(Distributed OVAL) [16], by considering a scenario in a VoIP infrastructure where two hosts are involved: a SIP 
server and a DNS server, each one with specific properties, corresponding to potential exploitable network 
vulnerability. In this scenario, a denial of service (DoS) attack over the SIP server can be performed by flooding 
it with irresolvable domain names that must be solved by a local DNS server. The local DNS server in turn, is 
configured for requesting the resolution of unknown domains to external servers, increasing the number of 
waiting requests and therefore the response time for each SIP request. Under these configuration states, 
flooding a SIP server with such type of messages will prevent it to respond to legitimate requests. It is 
important to highlight that both servers and the relationship between them are required conditions for the 
distributed vulnerability to be present. If the DNS server is not present or it is not compliant with the required 
specific conditions, the SIP server would immediately respond to a SIP client that its SIP request has failed. 

Design time verifications 
Formal verification provides a systematic way to assess the correctness of protocols, processes and systems. 
The main difference compared to simulation methods is that instead of only examining a limited area of the 
operational space of the system under consideration, it can be used to examine the whole state space of 
possible operations and conditions under which the system may operate. This means that all possible 
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combinations of inputs and actions can be taken into account and, therefore, all possible outputs can be 
derived and evaluated. One could regard the outcome of formal verification as the outcome of an infinitely 
large number of simulation runs. This means that contrary to simulations, formal verification methods are 
capable of capturing conditions and operations that may otherwise remain unnoticed, even after a very large 
number of simulation runs. In a similar way, formal verification is able to assess the performance and quantify 
properties of processes with a degree of confidence not possible through simulation runs.  

In general there are two approaches in formal verification [10]. The first one is to try to prove the correctness 
of a system and derive its properties through a sequence of theorems; this is called theorem proving. This 
process however is very cumbersome in practice and the more complicated the system the harder it becomes 
to use theorems to prove its correctness. The second approach is called model checking. In this approach the 
behaviour of the system under consideration is modelled using the description language of the model checker 
and then the model checker examines all possible system evolutions based on the model. That is model 
checking itself does not try to “understand” the behaviour of the system but is able to output the outcomes of 
its behaviour under all possible circumstances and check all of the outcomes with respect to the meeting or 
violation of properties of interest. The main limitation of model checking is the state explosion problem; as the 
size of the system and the parameters under consideration increase so do the number of states and transitions 
between states. To account for this the model of the system should be carefully constructed, omitting 
operations and features that are not of interest and by “abstracting” appropriately the operations that need to 
be included in the model. In addition there exist some proposals in the literature on how to scale the 
applicability of model checking by breaking down large systems into smaller ones, model checking the smaller 
systems and combining the results to derive the correctness (or faultiness) and properties of the larger system. 
This approach is known as compositional verification. 

In model checking, four main types of models are commonly used, depending on the characteristics of the 
system to be modelled and analysed; these are Discrete-time Markov Chains (DTMCs), Markov Decision 
Processes (MDPs), Continuous-time Markov Chains (CTMCs), and Continuous-time Markov Decision Processes 
(CTMDPs). Decision Processes extend Chains to account for non-deterministic behaviour; that is behaviour 
where the transition probabilities cannot be clearly defined. For example, probabilities for transitions triggered 
by external factors at random instances or incurred due to poor/unknown behavioural specification. In the first 
two models, all transitions take place in discrete (time) steps whereas in the latter two, time is modelled in a 
continuous manner. 

Network Utility Functions 
In [11] and [12], Kelly et al. presented an innovative idea of formulating a network optimization problem in 
terms of maximizing an utility function where the variables are the source rates constrained by link capacities 
and the objective function captures design goals. 

Since then many research activities have been carried out on distributed network resource allocation using the 
language of Network Utility Maximization (NUM). For example, also cross-layer interactions can be 
characterized by viewing the process of “layering as decomposition of a given NUM problem into many sub-
problems. These sub-problems are “combined together” by certain functions of the primal and dual variables. 
This framework of “layering as optimization decomposition” is well described in *13+.  

Utility functions appear to be a valid instrument for addressing the problem of stability and performance of a 
network. They can be constructed based on user behaviour model, or figures, that can be monitored (and 
controlled by nodes configurations); example of said figures are: availability, delay, latency, network utilization, 
network throughput, network bandwidth capacity, network costs, energy consumption, response time, etc. 

As an example, TCP/IP protocol can be seen as an example of a protocol for achieving a constrained 
optimization: its objective is to maximize the sum of source utilities (as functions of rates) with constraints on 
resources. In fact, each variant of congestion control protocol can be seen as a distributed algorithm 
maximizing a particular utility function. The exact shape of the utility function can be reverse engineered from 
the given protocol. Similarly, other recent results also show how to reverse engineer Border Gateway Protocols 
(BGPs) as a solution to the Stable Path Problem, and contention-based Medium Access Control (MAC) protocols 
as a game-theoretic selfish utility maximization [14]. 

In line with the NUM approach, network problems can be decomposed and methods (e.g. distributed 
algorithms and/or protocols) can be developed, by controlling local variables.  
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Fig. 3. Problem decomposition vs. methods as CO solvers 

It should be noted that by techniques such as Lyapunov function or the descent lemma, global or local 
asymptotic convergence towards the optimum could be proved. This makes NUM modelling approach very 
interesting for looking optimization of performance and stability. 

 

Following this modelling, the case study is developing a NEM in charge of coordinating diverse methods in 
order to solve CO problems whilst avoiding network instabilities.  

 

 

 

Fig. 4. NEM - Network Stability and Control 

Each method tries maximising its associated objective function. At the same time, NEM Network Stability and 
Control searches, in the space of methods configurations (using, for example, a beam-search algorithm), those 
configurations allowing maximising the global objective function (which is a combination of the single utility 
functions). This is done at regular intervals, upon reaching a trigger or in reaction to changes in the global 
objective function.  
 

Differentiation from the state of the art 
Today, the issue of network stability is only partly covered. In the future, higher and higher complexity and 
dynamicity of networks will pose serious problem of understanding, monitoring and controlling network 
instabilities.  

A methodology (definitions, models and methods) and the related instruments (tools) are still missing to allow 
Network Operators to validate (off-line) to monitor (in-line), predict and control the emergence of network 
instabilities. Some solutions have been developed for specific areas of applications, e.g. dynamic routing, queue 
control, flow control. Nevertheless a systematic approach to network stability is still missing. 

The case study solutions will lay the foundations of this systematic approach. 

Progresses with respect to the state of the art include:  

 Definition of a network stability metrics (how measure stability and how to manage it); 

 Definition of a general methodology and practical approaches for controlling network instabilities due 
to the potential unwanted coupling or even competition of multiple methods; 
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 Development open source tool-boxes for simulations-emulations of stability and performance of 
networks with (large) number of nodes.  

Impacts and benefits 
Future networks management will require the introduction of “self-organizing” capabilities. Practically this will 
be achieved through protocols, control loops, algorithms… etc. exploited across network layers.  

This will impact traditional network and service management by reducing CAPEX and OPEX: load balancing and 
traffic engineering, for example, not only can improve network performances (e.g. IT response time or net 
throughput), but can also ease human operators in Operations (reduction OPEX) and postpone network 
resources investments (reduction CAPEX).  

In order to maximize the benefits from introducing these methods, or better NEMs, it is necessary to 
orchestrate their actuations in order to avoid potential unwanted coupling or even competition causing 
instabilities. The case study solutions impact and benefit will be measured in terms of optimizing said benefits, 
by coordinating the methods in order to avoid (or limit) competitions and instabilities. Quantifications of the 
benefits could be done case by case through the adopted utility or objective functions. 
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TO BE CONTINUED 
This document is the first part in a series covering the introduction, general description, problem statement 
and innovation of the case study Networks Stability and Performance. Subsequent and complementary parts 
will be published in the near future, during the lifetime of the project with even more information, results and 
innovations. 

Keep in touch to get premium access to these future reports! 
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